
EPSILON REGULARITY FOR THE NAVIER-STOKES EQUATIONS VIA
WEAK-STRONG UNIQUENESS

DALLAS ALBRITTON, TOBIAS BARKER, AND CHRISTOPHE PRANGE

In honor of Olga Ladyženskaja

ABSTRACT. We give a new concise proof of a certain one-scale epsilon regularity criterion using
weak-strong uniqueness for solutions of the Navier-Stokes equations with non-zero boundary con-
ditions. It is inspired by an analogous approach for the stationary system due to Struwe.

1. INTRODUCTION

In the regularity theory of the three-dimensional non-stationary Navier-Stokes equations, so-
called epsilon regularity theory remains the state-of-the-art. As well as being of independent in-
terest, epsilon regularity at one scale (‘one-scale epsilon regularity’) has been a crucial tool for
proving some of the best results in the field. See [3], [22], [27] and [5], for example. Thus far, there
have been three main methods for proving one-scale epsilon regularity results:

• direct iteration arguments (see [3]),
• compactness arguments (see [21], [19]),
• De Giorgi techniques (see [28]).

This short article is devoted to a new concise proof of a certain one-scale epsilon regularity cri-
terion for the three-dimensional non-stationary Navier-Stokes equations away from boundaries.
Theorem B is based on slicing techniques and a comparison to a solution for which we have im-
proved integrability. To the best of our knowledge, related arguments in the Navier-Stokes context
were introduced by Struwe in [26] for the five-dimensional stationary Navier-Stokes equations.
Our paper is, in spirit, an analogue for the non-stationary Navier-Stokes equations.

The following localized weak-strong uniqueness result is the keystone of our paper.

Theorem A (first version of weak-strong uniqueness with boundary conditions). Let Ω ⊂ R3 be a
smooth bounded domain1 and T > 0. There exists κ̄ = κ̄Ω,T ∈ (0,∞) and C(Ω, T ) ∈ (0,∞) such
that the following holds.2 There exists a unique very weak solution

U ∈ L4(Ω× (0, T )) (1.1)

to the Navier-Stokes equations on Ω × (0, T ) in the sense of Definition 2.1 with boundary data a
and initial data b satisfying the integrability conditions

a ∈ L4(∂Ω× (0, T )), b ∈ L4(Ω), (1.2)

Date: January 2, 2023.
1We rely on linear results of [10], which require ∂Ω to be of class C2,1.
2See (3.9) for an estimate of κ̄Ω,T . One can take C(Ω, T ) := KΩ,T (1 + C0C2). Here C0 is defined in (3.4), C2 is

defined in (3.7) and KΩ,T ∈ (0,∞) is defined in (3.1).
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the compatibility conditions∫
∂Ω

a(·, t) · n = 0,

∫
Ω

b · ∇q = 0 for all q ∈ C∞(R3) (1.3)

and the smallness condition

κ := ‖a‖L4(∂Ω×(0,T )) + ‖b‖L4(Ω) < κ̄. (1.4)

Moreover, U ∈ L4(0, T ;L6(Ω)), and

‖U‖L4(0,T ;L6(Ω)) ≤ C(Ω, T )κ. (1.5)

The critical integrability in (1.5) is the main practical outcome of the theorem.
Below, we give a second version of this localized uniqueness result, see Theorem A’, that can be

directly used to prove the epsilon regularity result stated in Theorem B below.

Remark 1.1 (structure result). We actually prove a strengthened version of the uniqueness result.
Namely, we prove that any very weak solution U in the sense of Definition 2.1 with data satisfying
(1.2), (1.3) and the smallness condition (1.4) can be written as U = Ū + V , where Ū is the
unique very weak solution to the Stokes equation with boundary data a and initial data b and V
is the unique mild solution to the perturbed Navier-Stokes equations around Ū in Ω× (0, T ) with
homogeneous boundary and initial data. We refer to Section 3 below for more details.

Remark 1.2 (smallness assumption (1.4)). The smallness condition (1.4) is required in Section 3
(Step 1-b) below in order to construct a mild solution to the perturbed Navier-Stokes equations
around the solution Ū to the linear Stokes equations lifting the boundary data a and the initial
data b.

Remark 1.3 (qualitative integrability assumption L4). The integrability condition (1.1) on the
solution is essential to prove that the perturbation in Section 3 (Step 2) has finite energy. The
integrability condition (1.2) on the boundary data a is assumed in order to apply the linear results of
Farwig, Kozono and Sohr [10] (see Section 2 below). Notice that according to [10], the boundary
data can be taken in the larger space L4(0, T ;W− 1

6
,6(∂Ω)). However, we do not state such an

improved result, because in the application to epsilon regularity that we have in mind, the data a
satisfies (1.2).

In the second version of the localized uniqueness stated below, the main change with respect to
the previous theorem is in the conditions on the initial data b. Indeed the requirement (1.3) is strong
and imposes not only that b is divergence-free, but also that b ·n = 0 on ∂Ω. This condition cannot
be satisfied in general for data b arising from slicing in the proof of the epsilon regularity result,
Theorem B below; for details see Step 1 in Section 4. The assumptions in Theorem A’, contrary
to those of Theorem A, are immediately satisfied for the data stemming from the slicing in the
proof of Theorem B. In order to fit into the framework of Theorem B, we take Ω = Br0 for some
r0 ∈ (5

8
, 7

8
). This specific choice is only for convenience. It is easy to extend the result to more

general domains, the key point being that one has to assume that b is defined and divergence-free
on a larger domain than Ω, so that it is possible to cut-off.

Theorem A’ (second version of weak-strong uniqueness with boundary conditions). Let Ω = Br0

for some r0 ∈ (5
8
, 7

8
) and t0 ∈ (−1,−3

4
). There exists universal constants κ̄ ∈ (0,∞) and C ∈
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(0,∞) such that the following holds.3 There exists a unique very weak solution

U ∈ L4(Br0 × (t0, 0)) (1.6)

to the Navier-Stokes equations on Br0 × (t0, 0) in the sense of Definition 2.1 with boundary data a
and initial data b satisfying the integrability conditions

a ∈ L4(∂Br0 × (t0, 0)), b ∈ L4(B1), 4 (1.7)

the compatibility condition ∫
∂Br0

a(·, t) · n = 0, (1.8)

the incompressibility condition ∇ · b = 0 in B1 in the sense of distributions and the smallness
condition

κ := ‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(B1) < κ̄. (1.9)
Moreover, U ∈ L4(t0, 0;L6(Br0)), and

‖U‖L4(t0,0;L6(Br0 )) ≤ Cκ. (1.10)

Again, the critical integrability is the main practical outcome of the theorem.
We now state the epsilon regularity result. Let (U, P ) be a finite-energy weak solution to the

three-dimensional Navier-Stokes equations in Q1 = B1(0)× (−1, 0) i.e.

∂tU −∆U + U · ∇U +∇P = 0, ∇ · U = 0 in Q1,

in the sense of distributions, and (1.11)(
sup

t∈(−1,0)

∫
B1

|U(·, t)|2 +

0∫
−1

∫
B1

|∇U |2
) 1

2

≤M <∞. (1.12)

Theorem B (epsilon regularity). There exists ε̄ ∈ (0, 1) such that for any M ∈ (0,∞), for any
finite-energy weak solution U to the Navier-Stokes equations in the sense of (1.11)-(1.12) belong-
ing to C∞(B1 × (−1, T )) for all T ∈ (−1, 0),5 the following result holds.
Qualitative statement: Assume that U satisfies the smallness condition in Theorem A’, i.e.

‖U‖L4(Q1) < ε̄. (1.13)

Then U ∈ L∞(Q 1
4
).

Quantitative statement: Let 0 < ε < ε̄. Assume that

‖U‖L4(Q1) ≤ ε. (1.14)

Then U ∈ L∞(Q 1
4
) and in addition we have the quantitative estimate

‖U‖L∞(Q 1
4

) ≤ P (ε,M), (1.15)

where P (ε,M) is a positive polynomial in 0 < ε, M .

This result is a mere corollary of Theorem A’.

3See (3.14) for an estimate of κ̄. One can take C = K(1 + C0C2). Here C0 is defined in (3.4), C2 is defined in
(3.7) and K ∈ (0,∞) is a universal constant (see (3.13)).

4Notice here that b is defined on a domain strictly larger than Br0 so that one can cut-off b.
5This assumption is there to keep technicalities to a minimum. It makes our result applicable to rule out first-time

singularities.
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Remark 1.4 (smallness condition (1.13)). Ultimately, the reason for the space L4(Q1) in Theo-
rem B is that the solution of the linear Stokes equation with boundary data in L4(∂Ω× (0, T )) and
zero initial condition belongs to the critical space L4(0, T ;L6(Ω)) (see Theorem 2.2). Notably, the
proof we present below apparently does not work in L4−ε(Q1).

Remark 1.5 (nonlocality and pressure). Theorem B is in the spirit of some other epsilon regularity
results that do not involve the pressure, such as [29] and [18].

Outline of the paper. In Section 2, we review the concept of very weak solution with Lp ini-
tial and boundary data. In Section 3, we prove weak-strong uniqueness, Theorems A and A’. In
Section 4, we prove the epsilon regularity criterion, Theorem B.

Notations. For r > 0 and p ∈ (1,∞), we denote by A the Stokes operator realized on Lpσ(Br).
Notice that A = −P∆D, where P is the Helmholtz-Leray projection and ∆D is the realization
of the Laplace operator under the Dirichlet boundary condition on ∂Br. We also use the notation
(e−tA)t∈(0,∞) for the Stokes semigroup on Br. Notice that these notations do not involve explicitly
the parameter r in order to lighten the notation and because the parameter r will be fixed. For
further details concerning the Stokes operator and the Stokes semigroup, we refer to [25, Chapter
III.2 and IV.1] and [16]. For definitions of Sobolev spaces on ∂Ω, we refer to [25, Chapter I.3]. We
define C2

0,σ(Ω̄) := {f ∈ C2(Ω̄;R3) : div f = 0, f |∂Ω = 0}.
As is usual, the notation C denotes a numerical constant possibly depending on parameters

that we do not track. This constant may change from line to line. When a constant depends on
parameters that we track, we denote this by Cα,β,....

2. PRELIMINARIES

Let Ω ⊂ R3 be a smooth bounded domain.6 Let −∞ < T1 < T2 < ∞. Let a ∈ L1(∂Ω ×
(T1, T2);R3), b ∈ L1(Ω;R3) and F ∈ L1(Ω × (T1, T2);R3×3) satisfying the compatibility condi-
tions (1.3).

We consider the following Stokes problem:
∂tU −∆U +∇P = ∇ · F, ∇ · U = 0 in Ω× (T1, T2),

Ū = a on ∂Ω× (T1, T2),

Ū(·, T1) = b.

(2.1)

This problem includes in particular the standard Navier-Stokes problem taking F = −U ⊗ U .

Definition 2.1 (very weak solution). For a, b and F given as above, we say that U ∈ L1(Ω ×
(T1, T2)) is a very weak solution of (2.1) if for all Φ ∈ C1

0([T1, T2);C2
0,σ(Ω̄) and for all q ∈

C∞(Ω× [T1, T2];R), we have

−
T2∫
T1

∫
Ω

U · (∂tΦ + ∆Φ +∇q) = −
T2∫
T1

∫
Ω

F : ∇Φ

+

∫
Ω

b · Φ(·, T1)−
T2∫
T1

∫
∂Ω

a · (∇Φ · n)−
T2∫
T1

∫
∂Ω

(a · n)q.

(2.2)

6Below, we apply the results for the fixed smooth domain Ω = Br0 . Hence, we pay no attention here to how the
constants in the estimates will depend quantitatively on the regularity of the domain. This dependence is not tracked
in [10]. See also Footnote 1.
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We state here an existence and uniqueness result of very weak solutions to the Stokes system.
Results in this direction were established in [9], though the version we use below is from [10].

Theorem 2.2 (very weak solutions for the Stokes problem, [10, Lemma 1.2]). Let 4 ≤ s, q < ∞
such that 2

s
+ 3

q
= 1, and let r := 2

3
q. Let a ∈ Ls(T1, T2;Lr(Ω)) and F = b = 0.

Assume that a satisfies the compatibility condition (1.3).

Then, there exists a unique very weak solution U ∈ Ls(T1, T2;Lq(Ω)) to the Stokes problem
(2.1) in the sense of Definition 2.1. Morever,

‖U‖Ls(T1,T2;Lq(Ω)) ≤ CΩ,T1,T2,q‖a‖Ls(T1,T2;Lr(Ω)). (2.3)

Notice that our boundary data a is slightly less general (but general enough for our purposes)
than the data considered in [10, Lemma 1.2]. It follows that any term in the very weak formulation
of the equation (2.2) makes sense in a classical integral sense and duality brackets are not needed.
The statement of Theorem 2.2 follows directly from [10, Lemma 1.2]. Indeed, W− 1

q
,q(∂Ω) is the

dual space of W 1− 1
q′ ,q

′
(∂Ω) with 1

q
+ 1

q′
= 1, and by Sobolev embedding [4, Theorem 4.1.3],

W
1− 1

q′ ,q
′
(∂Ω) embeds into Lr′(∂Ω) for r = 2

3
q and 1

r
+ 1

r′
= 1. Therefore, a ∈ Ls(T1, T2;Lr(∂Ω))

embeds into Ls(T1, T2;W− 1
q
,q(∂Ω)).

Remark 2.3 (non-zero initial data). We handle non-zero initial data b as a separate issue. Indeed
this point is more classical than the case of rough boundary data which is treated in the result
above. For non-zero initial data, we rely on the Stokes semigroup estimates in Lebesgue spaces,
see for instance [16].

Remark 2.4 (on alternative linear results with rough boundary data). It is also possible to rely
on the results of Fabes, Lewis and Rivière for boundary value problems with Lp data obtained in
[20] for the half-space and in [8, 7] for bounded smooth domains. However, due to an additional
integrability condition on a · n on ∂Ω in [7, Theorem (IV.3.3), page 643], these results require
to work in L4+ε, ε > 0, rather than L4. Moreover, notice that there is a typo in the statement
of [7, Theorem (IV.3.1)]. The space for a · n is Lq̄tL

2
3
p̄

x , not Lq̄tL
3
2
p̄

x as written in [7, Theorem
IV.3.1]. Indeed, to get the estimate of the term involving the normal data, namely ∇H , one relies
on Theorem IV.2.3.

Lemma 2.5 (Uniqueness of square integrable very weak solutions). Let U ∈ L2(T1, T2;L2(Ω)) be
a very weak solution to the Stokes problem (2.1), in the sense of Definition 2.1, with F = a = b = 0.
Then U ≡ 0 on Ω× (T1, T2).

Proof. The proof relies on classical duality arguments, which we include for completeness. With-
out loss of generality, let T1 = −1 and T2 = 0. Let f ∈ C∞0 (Ω× (−1, 0);R3) be arbitrary. Define
f̃(x, t) = f(x,−t) and let Φ̃ solve

∂tΦ̃−∆Φ̃ +∇q̃ = f̃ and div Φ̃ = 0 in Ω× (0,∞), Φ̃|∂Ω = 0, Φ̃(·, 0) = 0.

From [25, Theorem 2.7.3, IV], there is a classical solution to the above linear problem satisfying
Φ̃, q̃ ∈ C∞(Ω× (δ, 2)) for all δ ∈ (0, 2). Furthermore, since f̃ is supported in time away from zero
we can apply [25, Lemma 2.4.2, Chapter IV] to infer that Φ̃ is supported in time away from zero.

We define
Φ(x, t) = −Φ̃(x,−t) and q(x, t) = q̃(x,−t).
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Inserting Φ and q into (2.2) (where F , a and b are all zero) gives

0∫
−1

∫
Ω

U · fdxds = 0 ∀f ∈ C∞0 (Ω× (−1, 0);R3).

This implies the desired conclusion. �

Remark 2.6 (Very weak solutions and the energy equality). Let U ∈ L2(T1, T2;L2(Ω)) be a very
weak solution to the Stokes problem (2.1) in the sense of Definition 2.1, with a = b = 0 and
F ∈ L2(Ω× (T1, T2);R3×3). Applying [25, Theorem 2.3.1 and Theorem 2.4.1, IV], together with
Lemma 2.5, gives that U ∈ C([T1, T2];L2

σ(Ω)) ∩ L2(T1, T2;W 1,2
0,σ (Ω)) with

‖U(·, t)‖2
L2(Ω) + 2

t∫
T1

∫
Ω

|∇U |2dxds = −2

t∫
T1

∫
Ω

F : ∇Udxds ∀t ∈ [T1, T2].

This can also be used to show that very weak solutions to the Navier-Stokes equations (with a = 0)
satisfy the energy equality. For results in this direction, see [13].

3. PROOF OF THE LOCALIZED WEAK-STRONG UNIQUENESS RESULTS

3.1. Proof of Theorem A.

Step 1: existence of a ‘strong’ solution to the Navier-Stokes system7 in L4(0, T ;L6(Ω)).
Step 1-a: linear problem.
Our goal is to lift the boundary data a and the initial data b satisfying (1.2) and (1.3) by constructing
a very weak solution Ū to the Stokes problem (2.1) in Ω× (0, T ) with source F = 0. By Theorem
2.2 of Farwig, Kozono and Sohr, with s = r = 4 and q = 6, there exists a unique very weak
solution Ua ∈ L4(0, T ;L6(Ω)) in the sense of Definition 2.1 to the Stokes system with F = b = 0.
Hence we construct Ū the unique very weak solution in the sense of Definition 2.1 to the Stokes
system with F = 0 as follows:

Ū = Ua + e−tAb.

Thanks to the semigroup estimates of [16], we have for t ∈ (0,∞),

‖e−tAb‖L6(Ω) ≤ CΩt
− 1

8‖b‖L4(Ω).

Hence,
‖Ū‖L4(0,T ;L6(Ω)) ≤ KΩ,T

(
‖a‖L4(∂Ω×(t0,0)) + ‖b‖L4(Ω)

)
, (3.1)

for KΩ,T ∈ (0,∞).

Step 1-b: existence of a unique strong solution V to the perturbed system.
In this step, we construct a mild solution to the perturbed Navier-Stokes system

∂tV −∆V +∇Q = −∇ · (V ⊗ V )−∇ · (V ⊗ Ū)−∇ · (Ū ⊗ V )−∇ · (Ū ⊗ Ū),

∇ · V = 0 in Ω× (0, T ),

V = 0 on ∂Ω× (0, T ),

V (·, 0) = 0 on Ω.

(3.2)

7After completion of this paper, we became aware that in [9] the existence of a ‘strong solution’ with small non-zero
boundary data is also shown. To make this paper self-contained, we include such arguments in Step 1 below.
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for a small drift Ū . We show that the Duhamel equation associated to (3.2)

V (·, t) = −
t∫

0

e−(t−s)A (∇ · (V ⊗ V ) +∇ · (V ⊗ Ū) +∇ · (Ū ⊗ V ) +∇ · (Ū ⊗ Ū)
)
ds (3.3)

has a unique fixed point in the critical space L4(0, T ;L6(Ω)).
For t ∈ (0, T ), define

B(D,E)(·, t) := −
t∫

0

e−(t−s)A∇ · (D ⊗ E) ds.

Using [17, Proposition 20], we see that∥∥e−(t−s)A∇ · (D ⊗ E)
∥∥
L6(Ω)

≤ C

(t− s) 3
4

‖D(·, t)‖L6(Ω)‖E(·, t)‖L6(Ω),

and hence, by Hardy-Littlewood-Sobolev’s theorem [15, Theorem 7.25],

‖B(D,E)‖L4(0,T ;L6(Ω)) ≤ C0‖D‖L4(0,T ;L6(Ω))‖E‖L4(0,T ;L6(Ω)). (3.4)

Define the linear operator

L(D)(·, t) := −
t∫

0

e−(t−s)A∇ · (D ⊗ Ū + Ū ⊗D) ds.

Then by the same reasoning as above

‖L(D)‖L4(0,T ;L6(Ω)) ≤ C1‖D‖L4(0,T ;L6(Ω))‖Ū‖L4(0,T ;L6(Ω)), (3.5)

and for the source term quadratic in Ū ,∥∥B(Ū , Ū)
∥∥
L4(0,T ;L6(Ω))

≤ C0‖Ū‖2
L4(0,T ;L6(Ω)). (3.6)

Let
C2 := min

( 1

C0

,
1

C1

)
. (3.7)

Using (3.4)-(3.6), we can apply [14, Lemma 4.1]. This gives the existence of a fixed point/strong
solution V ∈ L4(0, T ;L6(Ω)) provided that

‖Ū‖L4(0,T ;L6(Ω)) <
C2

4
. (3.8)

Moreover,
‖V ‖L4(0,T ;L6(Ω)) ≤ 4C0‖Ū‖2

L4(0,T ;L6(Ω)).

In view of the linear estimate (3.1), this is achieved whenever

‖Ū‖L4(0,T ;L6(Ω)) ≤ KΩ,T

(
‖a‖L4(0,T ;L4(Ω)) + ‖b‖L4(Ω)

)
= KΩ,Tκ

< KΩ,T κ̄ =
C2

4
,

i.e.

κ̄ :=
C2

4KΩ,T

. (3.9)
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Therefore, there is a strong solution such that

‖V ‖L4(0,T ;L6(Ω)) < 4C0K
2
Ω,Tκ

2 = C0C2KΩ,Tκ. (3.10)

The fact that V is the only strong solution in L4(0, t;L6(Ω)) follows from (3.4) and arguments in
[6, Theorem (3.3)].

Step 2: weak-strong uniqueness result.
Let W := U − Ū ∈ L4(Ω× (0, T )). Let V ∈ L4(0, T ;L6(Ω)) be the strong solution constructed

in Step 1-b above. Then V −W is a very weak solution to the Stokes system with a = b = 0 and
F := U ⊗ U − (V + Ū) ⊗ (V + Ū) ∈ L2(Ω × (0, T )). Applying Remark 2.6 gives that V −W
has finite energy on Ω× (0, T ) with zero initial data and satisfies the energy equality

1

2

∫
Ω

|V −W |2(x, t)dx+

t∫
0

∫
Ω

|∇(V −W )|2dxds

=

t∫
0

∫
Ω

(V −W )⊗ (V + Ū) : ∇(V −W )dxds ∀t ∈ [0, T ).

For t ∈ [0, T ), we define

E(t) := sup
s∈[0,t]

1

2

∫
Ω

|V −W |2(x, s)dx+

t∫
0

∫
Ω

|∇(V −W )|2(x, s)dxds.

Using the above energy equality (combined with Hölder’s inequality, interpolation of Lebesgue
spaces, the Sobolev embedding theorem and Young’s inequality) yields that for t ∈ [0, T ) and
some positive universal constant C,

E(t) ≤ CE(t)

t∫
0

‖(V + Ū)(·, s)‖4
L6(Ω)ds.

Using this, together with the fact that V + Ū is in L4(0, T ;L6(Ω)), allows us to use an absorbing
argument to conclude that E(t) = 0 for all t ∈ (0, T ). This concludes the proof of Theorem A and
of the structure result mentioned in Remark 1.1. Notice that the quantitative estimate (1.5) directly
follows from the linear estimate (3.1), the estimate (3.10) for the mild solution and the definition
of κ̄ in (3.9).

3.2. Proof of Theorem A’. The proof of this result only differs from the proof of Theorem A in
the treatment of the linear evolution of the initial data b. Let us outline the changes, which concern
only Step 1-a of Section 3.1.

We take ϕ ∈ C∞c (B 15
16

) a cut-off function such that ϕ ≡ 1 on B 7
8
, 0 ≤ ϕ ≤ 1 and |∇ϕ| ≤ 32.

Thanks to the Bogovskii operator [12] on the annulus B 15
16
\ B 7

8
, there exists a divergence-free

extension E(b) of ϕb defined on R3 that is compactly supported in B 15
16

, E(b) = b on B 7
8
⊂ Br0

and such that

‖E(b)‖L4(B1) ≤ C‖b‖L4(B1).
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Let Γ be the heat kernel on R3. We note that Γ(· − t0) ? E(b) is divergence-free, which implies∫
∂Br0

(
Γ(· − t0) ? E(b)

)
· n = 0.

Moreover, it follows from [7, Lemma IV.3.2] that∥∥Γ(· − t0) ? E(b)
∥∥
L4(∂Br0×(t0,0))

≤ C
(
(−t0)

1
8 + (−t0)

1
4

)
‖E(b)‖L4(R3) ≤ C‖b‖L4(B1), (3.11)

and ∥∥Γ(· − t0) ? E(b)
∥∥
L4(t0,0;L6(Br0 ))

≤ C(−t0)
1
8‖E(b)‖L4(R3) ≤ C‖b‖L4(B1), (3.12)

where C ∈ (0,∞) denotes as usual a universal constant. We can now construct the linear solution
Ū as follows. Let

ã = a− Γ(· − t0) ? E(b)|∂Br0
.

By Theorem 2.2 of Farwig, Kozono and Sohr [10], with s = r = 4 and q = 6, there exists a unique
very weak solution Uã ∈ L4(t0, 0;L6(Br0)) in the sense of Definition 2.1 to the Stokes system with
F = b = 0 and boundary data ã. Hence we construct Ū the unique very weak solution in the sense
of Definition 2.1 to the Stokes system with F = 0 as follows:

Ū = Uã + Γ(· − t0) ? E(b).

Hence, the estimates (2.3) and (3.12) lead to

‖Ū‖L4(t0,0;L6(Br0 )) ≤ K
(
‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(Br0 )

)
, (3.13)

where K ∈ (0,∞) denotes a universal constant.
The rest of the proof, Step 1-b to Step 2 of Section 3.1 are identical, replacing the constant KΩ,T

by K. The definition of κ̄ becomes

κ̄ :=
C2

4K
. (3.14)

Remark 3.1 (on the compatibility conditions). We emphasize that in the compatibility conditions
(1.3), the condition8 on the boundary data a is much weaker than the condition on b. Indeed we
only ask that a · n has mean zero on ∂Ω, while b · n is required to vanish identically on ∂Ω. This
fact is the essential redeeming feature that allows the above argument to work. Notice that owing
to the fact that Γ(· − t0) ? E(b) is divergence-free,

(
Γ(· − t0) ? E(b)

)
· n has mean zero on ∂Br0

but is not necessarily zero identically.

4. PROOF OF THE EPSILON REGULARITY RESULT

This section is devoted to the proof of Theorem B. We directly prove the quantitative version,
i.e. the bound (1.15). We assume that U is a finite-energy weak solution to the Navier-Stokes
equations, i.e. (1.11) and (1.12) hold. In addition, we assume that U belongs to C∞(B1× (−1, T ))
for all T ∈ (−1, 0), see Footnote 5, and satisfies the assumption (1.14) with 0 < ε ≤ ε̄ and ε̄
defined in (4.4).

Step 1: finding good space and time scales.
We need to select a space slice and a time slice. The choices are completely independent, so the

8We stress that this condition on a comes from the linear result Theorem 2.2 taken from [10]; these conditions are
also present in the work [7].
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order in which we select the slices does not matter. Let us first select a space slice r0 ∈ (5
8
, 7

8
). By

the coarea formula and Fubini’s theorem, we have
0∫

−1

∫
B1

|U |4 dxdt =

0∫
−1

1∫
0

∫
∂Br

|U |4 dSrdrdt =

1∫
0

0∫
−1

∫
∂Br

|U |4 dSrdtdr.

Therefore, the pigeonhole principle implies that there exists r0 ∈ (5
8
, 7

8
) such that

0∫
−1

∫
∂Br0

|U |4 dSr0dt ≤ 4

0∫
−1

∫
B1

|U |4 dxdt. (4.1)

We now select a time slice. By the pigeonhole principle, there exists t0 ∈ (−1,−3
4
) such that∫

B1

|U |4(x, t0) dx ≤ 4

0∫
−1

∫
B1

|U |4 dxdt. (4.2)

From now on, we call a := U |∂Br0×(−1,0) and b := U(·, t0). By (4.1) we have a ∈ L4(∂Br0 ×
(−1, 0)) and by (4.2) we have b ∈ L4(B1). Moreover,

‖a‖L4(∂Br0×(t0,0)) + ‖b‖L4(B1) ≤ 2
√

2‖U‖L4(Q1) ≤ 2
√

2ε < 2
√

2ε̄ ≤ κ̄,

with κ̄ defined by (3.14), on condition that ε̄ ≤ κ̄
2
√

2
.

Step 2: applying weak-strong uniqueness.
We now apply the weak-strong uniqueness result of Theorem A’ to the solution U on Br0 × (t0, 0)
with the data a and b from Step 1 above. By the quantitative estimate (1.5) it follows that

‖U‖L4(t0,0;L6(Br0 )) ≤ 2
√

2εK(1 + C0C2). (4.3)

Step 3: conclusion via Ladyženskaja-Prodi-Serrin.
We can now argue in a similar spirit to [23, 2], except we use the bound (4.3) to set up a contraction
mapping9 related to the localized vorticity equation rather than the velocity. In particular, there
exists η̄ such that for any

0 < ε <
η̄

2
√

2K(1 + C0C2)
=: ε̄ (4.4)

we have
‖U‖L6(Q 1

2
) ≤M(1 + ε).

With this, we can bootstrap in the same way as in [24] to obtain the estimate (1.15). This concludes
the proof of Theorem B.

Remark 4.1 (on the linear solution). In this proof, notice that we are not able to assert that the
solution Ū to the linear Stokes problem with rough boundary data a ∈ L4(Br0 × (t0, 0)) (see the
structure result in Remark 1.1) is smooth in space. However, the linear result is pivotal in order to
establish that the original solution U has improved critical integrability, hence is smooth in space.
Notice that we obtain L∞ time integrability by appealing to the L∞t L

2
x control granted by being

finite-energy. We cannot bootstrap further in time without controlling the pressure p up to time 0.

9For such a contraction mapping, see for instance [2, Lemma 12].
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Remark 4.2 (on the half-space). It remains an open problem as to whether such a proof can be
done for establishing epsilon regularity results near a boundary. Indeed, the linear results of Farwig,
Kozono and Sohr [10] and of Fabes, Lewis and Rivière [7] ask for smoothness of the domain Ω,
see for instance Theorem 2.2 above. However, we are unable to carry out the slicing procedure of
Step 1 above near a smooth boundary.

Remark 4.3 (comparison with Struwe [26]). Struwe’s approach to the five-dimensional station-
ary Navier-Stokes equations is technically different; it involves iterating the energy on a sequence
of balls, which we avoid. A version of our proof should work in the stationary setting of [26] as
well. There, the smallness condition in L4 could be replaced by smallness in H1, since in five di-
mensions, the slicing procedure yields boundary data in H1(∂Br0) ⊂ L4(∂Br0) (four-dimensional
Sobolev embedding). The slicing technique has proven useful for the six-dimensional stationary
Navier-Stokes equations [11] and advection-diffusion equation with rough drifts [1], among others.
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