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ABSTRACT. In this paper we develop new methods to obtain regularity criteria for the three-
dimensional Navier-Stokes equations in terms of dynamically restricted endpoint critical norms:
the critical Lebesgue norm in general or the critical weak Lebesgue norm in the axisymmetric
case. This type of results is inspired in particular by a work of Neustupa (2014), which handles
certain non endpoint critical norms. Our work enables to have a better understanding of the
nonlocal effect of the pressure on the regularity of the solutions.
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1. INTRODUCTION

One currently active research direction on the three-dimensional Navier-Stokes equations

∂tv −∆v + v · ∇v +∇p = 0, ∇ · v = 0. (1.1)

is the investigation of scales that play a role in potential singularity formation. Many results
were proved in the past ten years that: (i) show dynamically restricted regularity criteria and on
the other side of the coin (ii) show that certain scale-invariant quantities accumulate/concentrate
on specific scales near a potential singularity. Let us cite (non exhaustively) the following
works: [13, 7, 12, 22] on frequency localized results, [21, 16, 3, 18, 8] on spatially localized
results. For a more extensive bibliography, we refer to the recent survey [5].

In this vein, let us mention in particular the results of Nečas and Neustupa [25] and of
Neustupa [23, 24]. The papers [25, 23] lead to [24], where the author proves a dynamically
restricted version of the Ladyženskaja-Prodi-Serrin regularity criteria, namely if v is a finite-
energy weak solution to (1.1) in R3 × (−1, 0) such that 0 is a first-time singularity and such
that (0, 0) is a singular point,1 then

0∫
−1

( ∫
B0(
√
a)\B0(

√
−at)

|v|p dx

) q
p

ds =∞

for critical Lebesgue exponents 2
q

+ 3
p

= 1, 3 ≤ q < ∞, 3 < p ≤ 9 and a certain a > 0 (see
Footnote 3). In this paper, we address the endpoint p = 3 and q = ∞. Hence, the result stated
below generalizes in particular the celebrated result of Escauriaza, Seregin and Šverák [14].
In the case that v is axisymmetric we obtain strengthened results, which generalize the results
of [11, 10, 19, 29]. For an illustration of Neustupa’s result and our theorem below, we refer to
Figure 1.

Date: February 24, 2023.
1By definition, the point (0, 0) is a singular point if for all r ∈ (0, 1), v /∈ L∞(Q(0,0)(r)), where Q(0,0)(r) is

the parabolic cylinder B0(r)× (−r2, 0). The point (0, 0) is called a regular point if it is not a singular point.
1
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Theorem A. Let v be a finite-energy weak solution to the Navier-Stokes equations (1.1) in
R3 × (−1, 0) such that 0 is a first-time singularity.2 Assume (0, 0) is a singular point.
Then

lim sup
t→0+

‖v(·, t)‖L3(B0(
√
a)\B0(

√
−at)) =∞. (1.2)

If in addition, the solution is axisymmetric, then

lim sup
t→0+

‖v(·, t)‖L3,∞(B0(
√
a)\B0(

√
−at)) =∞. (1.3)

Here, and throughout the paper, a := λS(B0(1)) > π, where λS(B1) is the first eigenvalue of
the Dirichlet-Stokes operator on B0(1).3

0 (0, 0) potential singular point

exterior of the paraboloid

with a priori critical control

−1

FIGURE 1. Illustration for Theorem A

Let us remark the following three facts:

(1) Theorem A is stated in the global setting for first-time singularities of Leray-Hopf solu-
tions. In view of the global regularity problem for the three-dimensional Navier-Stokes
equations this is an appropriate setting. That said, Theorem A can be localized i.e.
proved for suitable solutions as is the result of Neustupa [24, Theorem 1]. Localizing
requires minor technical changes in the proof.

(2) We believe that Theorem A can be quantified using the strategy developed in the works
[32, 4, 2, 27] and further explained in the recent survey paper [5]. The scale-invariant
controls obtained in Section 4 play a key role for this quantification as do the scale-
invariant control L∞t L

3
x in [32, 2] or the Type I assumption in [4].

(3) After finishing the paper, we were made aware of the work [20] dealing with similar
hollowed critical conditions in the axisymmetric case. There, De Giorgi type energy
estimates and Moser type iteration are directly used for the equation for the swirl, which
is pressureless, in order to deduce Hölder continuity.

2In particular, v ∈ C∞(−1, T ;C∞(R3)) for all T ∈ (−1, 0). We introduce this assumption in order to remove
certain technicalities. Notice that the framework of first-time singularities is relevant for the study of the global
regularity problem for the 3D Navier-Stokes equations.

3From our estimates, we can allow a ∈
(
0, 43λS(B0(1))

)
. We choose a := λS(B0(1)) in order to fix the ideas.
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1.1. Heuristics for the proof. The proof is by contraposition, assuming that one of the quan-
tities in (1.2) or (1.3) is bounded. To fix the ideas, let us assume that

ess sup
s∈(−1,0)

‖v(·, s)‖
L3(B0(

√
a)\B0(

√
a(−s))) ≤M, (1.4)

for some M ≥ 1.

Failure of a direct strategy. It seems not possible to directly prove that (1.4) implies the re-
gularity by adapting the compactness argument of [14]. Indeed, the absence of a global scale-
invariant assumption prevents us from relying on persistence of singularity type results for ob-
taining a non-zero solution from a limiting procedure. It turns out that proving a scale-invariant
bound inside the parabolic is the cornerstone of our strategy.

Key difficulty. We work in physical space variables rather than renormalized variables of Giga
and Kohn type as is done by Nečas and Neustupa [25] and Neustupa [23, 24]. Our study is based
on time-weighted scale-invariant local energy controls. The key point that enables results such
as (1.2) or (1.3) to hold is the divergence-form structure of the non linear term v·∇v = ∇·(v⊗v)
in the Navier-Stokes equations. If the pressure was not there, it would be easy to obtain a scale-
invariant control inside the paraboloid ⋃

s∈(−1,0)

B0(θa(s)), (1.5)

because the variation of the local energy localized on the parabolid only involves a priori control
outside the paraboloid, for instance in the region⋃

s∈(−1,0)

B0(2θa(s)) \B0(θa(s)).

The major difficulty we have to face is the pressure term in the local energy inequality

0∫
−1

∫
R3

pv · ∇Ψ2 dxdτ.

Indeed, because of the nonlocality of the pressure, bounding this term involves estimates of the
velocity inside the paraboloid.

Key new idea. Our idea to circumvent the problem of the pressure is to introduce a test function
ΨN that is supported in ⋃

s∈(−1,0)

B0((N + 1)θa(s)) \B0(Nθa(s)),

for N � 1 i.e. far away from the region (1.5) where we lack critical information. Taking N
large (in terms of M , see (1.4)) enables us to show that the contribution of the problematic
pressure term is negligible compared to an appropriate localized energy of v. This scheme is
totally different from what is done in [24]. There, the fact that non-endpoint critical controls
are considered buys some smallness that allows a control of the pressure term. Note that in [24]
Neustupa eventually applies ε-regularity to conclude the regularity. Contrary to this, we do not
have such smallness in the endpoint case and do not rely on ε-regularity, see Section 4.
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Two technical points. First, the constraint on a in Theorem A (see also Footnote 3) comes from
the condition (3.15) that is needed in order to get a damping term in the local energy inequality.

Second, as mentioned above, we work with scale-invariant weighted local energy quantities.
The weights, see (2.7) below involve a parameter γ. In order for the local energy estimate (2.7)
to be well-defined, we first need to take γ > 0. This enables us, see Section 3.3, to prove that
a certain scale-invariant kinetic energy is bounded (quantity f in (3.2)), which in turn enables
us to make sense of (2.7) for γ > −1 and in particular for γ = 0. This parameter is used in the
final part of the paper, Section 4.

1.2. Outline of the paper. Section 2 is concerned with scale-invariant weighted local energy
estimates. The focus is on the control of the pressure term. Section 3 demonstrates the bound-
edness of a scale-invariant kinetic energy localized on the paraboloid (1.5). The final part of
the paper, Section 4, is devoted to the proof of Theorem A. Appendix A surveys some results
about Lorentz spaces.

1.3. Notations. For a > 0, we define θa(t) =
√
a(−t). Notice that throughout the paper

a := λS(B0(1)) as stated in Theorem A.
Throughout the paper C is assumed to be a positive universal constant which may change

from line to line. In particular C, does not depend on the parameters a, γ or N (see Section 2).
Note that the inequality . . . ≤ C(. . .) is sometimes denoted by . . . . . . .. The notation Cb1,... bk
denotes a positive constant depending on the parameters b1, . . . bk. Note that the inequality
. . . ≤ Cb1,... bk(. . .) is sometimes denoted by . . . .b1,... bk . . ..

2. WEIGHTED ENERGY AND PRESSURE ESTIMATES

Let M ≥ 1. In this section we assume

ess sup
s∈(−1,0)

‖v(·, s)‖L3,∞(B0(
√
a)\B0(θa(s))) ≤M. (2.1)

For basic facts about weak Lebesgue and Lorentz spaces we refer to Appendix A. We mainly
rely on the Hölder inequality for Lorentz spaces in the estimates below, see Proposition A.1.
Our objective is to get scale-invariant controls for the velocity inside the region (1.5) via the
local energy inequality and the use of the critical control (2.1). The final scale-invariant con-
trol, see Proposition 3.1, is obtained in Section 3. Our focus in the present section is on an
appropriate choice of test functions for the local energy inequality and on the estimates for the
pressure.

Let4 N ≥ 4 and γ > 0.5 Let ϕN ∈ C∞c (R3) with ϕN positive, ϕN(x) = 1 on B0(N),
suppϕN ⊂ B0(N + 1) and ‖∇ϕN‖L∞ . 1. We then test the Navier-Stokes equations (1.1)
with

θγa(t)Ψ2
N(x, t), t < 0, (2.2)

where

ΨN(x, t) := ϕN

( x

θa(t)

)
, (2.3)

4Later on, N will be taken large depending in particular on M , see (3.15).
5The restriction γ > 0 is needed for the validity of (2.4) for all t ∈ (s, 0]. We will subsequently show, see (4.2),

that the second term in the left hand side of (2.4) also makes sense for γ > −1. This fact will be used in Section 4.
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and integrate over R3 × (s, t) with t ∈ (s, 0].6 This yields for all s ∈ (−1, 0) and for all
t ∈ (s, 0],

θa(t)
γ‖ΨNv(·, t)‖2

2 +
aγ

2

t∫
s

θa(τ)γ−2‖ΨNv‖2
2 dτ + 2

t∫
s

θa(τ)γ‖ΨN∇v‖2
2 dτ

≤ θa(s)
γ‖ΨNv(·, s)‖2

2 +

t∫
s

θa(τ)γ
∫
R3

[
−∇|v|2 · ∇Ψ2

N + (|v|2 + 2p)(v · ∇Ψ2
N)
]
dτ

+

t∫
s

θa(τ)γ−2

∫
R3

(1

2
ax · ∇Ψ2

N(x, τ)
)
|v(x, τ)|2 dτ. (2.4)

Notice that
‖ax · ∇Ψ2

N‖L∞(R3) . aN, (2.5)
which will be used below, see (2.16). Now, observe that the identity

Ψ2
N |∇v|2 = |∇(ΨNv)|2 − |∇ΨN |2|v|2 −

1

2
∇Ψ2

N · ∇|v|2 (2.6)

allows ∇(ΨNv) to appear. Hence, using the identity (2.6) and multiplying (2.4) by θa(s)−γ−1,
and for all s ∈ (−1, 0), t ∈ (s, 0],

θa(t)
γ

θa(s)γ+1
‖ΨNv(·, t)‖2

2 +
aγ

2

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv‖2

2 dτ + 2

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ

≤ 1

θa(s)
‖ΨNv(·, s)‖2

2 +

t∫
s

θa(τ)γ

θa(s)γ+1

∫
R3

[
2|∇ΨN |2|v|2 + (|v|2 + 2p)(v · ∇Ψ2

N)
]
dx dτ

+

t∫
s

θa(τ)γ−2

θa(s)γ+1

∫
R3

1

2
ax · ∇Ψ2

N |v|2 dx dτ. (2.7)

We now split the right hand side of (2.7) into the pressureless terms

KI(s, t) =

t∫
s

θa(τ)γ

θa(s)γ+1

∫
R3

[
2|∇ΨN |2|v|2 + |v|2v · ∇Ψ2

N

]
dx dτ

+
1

2

t∫
s

θa(τ)γ−2

θa(s)γ+1

∫
R3

ax · ∇Ψ2
N(x, τ)|v|2 dx dτ

(2.8)

and the pressure term

KII(s, t) =

t∫
s

θa(τ)γ

θa(s)γ+1

∫
R3

2p(v · ∇Ψ2
N) dx dτ. (2.9)

The quantity KI(s, t) is easy to bound using the a priori critical control (2.1). Indeed, all the
terms in the right hand side of (2.8) involve a derivative of the cut-off function ΨN , hence, these
integrals are all supported in the complement of (1.5). The quantity KII(s, t) concentrates the
difficulties, because of the nonlocality of the pressure. We handle this issue first.

6For t = 0, we integrate over R3 × (s, δ) and let δ → 0−.
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2.1. Pressure estimates. To treat the quantity KII(s, t), observe that

∇Ψ2
N(x, τ) =

2

θa(τ)
ΨN(x, t)∇ϕN

( x

θa(τ)

)
,

thus, ∣∣KII(s, t)
∣∣ ≤ C0

t∫
s

θa(τ)γ−1

θa(s)γ+1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

|pvΨN | dx dτ.

Then we decompose the pressure term. Consider a cut-off function η ∈ C∞c (R3) such that:

η(x) =

 1 if |x| < 1
2

√
a,

∈ [0, 1] if 1
2

√
a < |x| < 3

4

√
a,

0 if 3
4

√
a < |x|,

and satisfying |∇η| < C√
a

and |∇2η| < C
a

. Let us also write η(x) = η1(x, t)+η2(x, t), where η1

and η2 are C∞0 with values in [0, 1], and such that η1(·, t) is equal to 1 on B0(θa(t)) and η1(·, t)
is supported on B0(2θa(t)).7 This decomposition is classical, see for instance [9], except for
the additional localization on the paraboloid via η1. We summarize the decomposition in the
following lemma.

Lemma 2.1. Let v be a finite-energy weak solution to the Navier-Stokes equations (1.1) in
R3 × (−1, 0) such that v ∈ C∞(−1, T ;C∞(R3)) for all T ∈ (−1, 0). There exist a universal
constant C ∈ (0,∞) such that for all τ ∈ (− 1

16(N+1)2
, 0) and for all x ∈ B0((N + 1)θa(τ)) \

B0(Nθa(τ)),

|p(x, τ)| = |η(x)p(x, τ)| ≤ C

N3θa(τ)3

∫
B0(θa(τ))

|v(y, τ)|2 dy

+
C

N3θa(τ)3

∫
B0(2θa(τ))\B0(θa(τ))

|v(y, τ)|2 dy

+

∣∣∣∣∣ 1

4π

∫
B0( 3

4

√
a)\B0(2θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[η2vivj](y, τ) dy

∣∣∣∣∣
+

C

(
√
a)3

∫
B0( 3

4

√
a)\B0( 1

2

√
a)

[|v|2 + |p|](y, τ) dy

=:p̄1(τ) + p̄2(τ) + p̄3(x, τ) + p̄4(τ). (2.10)

Proof. Using the identity

η(x)p(x, τ) = − 1

4π

∫
R3

1

|x− y|
[∆(ηp)](y, τ) dy

and the fact that ∆p = −∂i∂j(vivj), we obtain

η(x)p(x, τ) := p1(x, τ) + p2(x, τ) + p3(x, τ) + p4(x, τ),

where

p1(x, τ) :=
1

4π

∫
B0(θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[η1vivj](y, τ) dy,

7Notice that this decomposition of η is only needed for t ∈ (− 1
4 , 0).
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p2(x, τ) :=
1

4π

∫
B0(2θa(τ))\B0(θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[ηvivj](y, τ) dy,

p3(x, τ) :=
1

4π

∫
B0( 3

4

√
a)\B0(2θa(τ))

∂2

∂yi∂yj

(
1

|x− y|

)
[η2vivj](y, τ) dy

and

p4(x, τ) :=
1

2π

∫
B0( 3

4

√
a)\B0( 1

2

√
a)

xi − yi
|x− y|3

(
∂η

∂yj
vivj

)
(y, τ) dy

+
1

4π

∫
B0( 3

4

√
a)\B0( 1

2

√
a)

1

|x− y|

(
∂2η

∂yi∂yj
vivj

)
(y, τ) dy

+
1

2π

∫
B0( 3

4

√
a)\B0( 1

2

√
a)

xi − yi
|x− y|3

(
∂η

∂yj
p

)
(y, τ) dy

+
1

4π

∫
B0( 3

4

√
a)\B0( 1

2

√
a)

1

|x− y|
(∆η p) (y, τ) dy.

Notice that

dist
(
B0(2θa(τ)), B0((N + 1)θa(τ)) \B0(Nθa(τ))

)
≥ (N − 2)θa(τ),

and

dist
(
B0(1

2

√
a), B0((N + 1)θa(τ)) \B0(Nθa(τ))

)
≥ 1

4

√
a

for τ ∈ (− 1
16(N+1)2

, 0). Combining the above two estimates with the above pressure decompo-
sition concludes the proof of the lemma. �

By Lemma 2.1, we have for all s ∈ (− 1
16(N+1)2

, 0) and for all t ∈ (s, 0],∣∣KII(s)
∣∣

≤ C

θa(s)γ+1

t∫
s

θa(τ)γ−1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

(
p̄1(τ)+p̄2(τ)+p̄3(x, τ)+p̄4(τ)

)
|vΨN | dx dτ,

(2.11)

where p̄i, i = 1, . . . 4 are defined in (2.10). We now turn to the estimates of each term in the
right hand side of (2.11).

Term involving p̄1. The term involving p̄1 is the main source of difficulties in this paper. Indeed,
this term concentrates the nonlocal part of the pressure that cannot be directly controlled via
the a priori critical assumption. Here we control this term via the kinetic energy in B0(θa(τ)).
In Section 3.2 we will then be able to control the scale-invariant local energy via a Gronwall
type argument.

From Hölder’s inequality for Lorentz spaces, see Proposition A.1, the fact that

‖1B0((N+1)θa(τ))\B0(Nθa(τ))‖L 3
2 ,1(R3)

≤ CN2θa(τ)2,
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and by (2.1), we obtain

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

|v(x, τ)| dx ≤CN2θa(τ)2‖v(·, τ)‖L3,∞(B0((N+1)θa(τ))\B0(Nθa(τ)))

≤CN2Mθa(τ)2.
(2.12)

Therefore

t∫
s

θa(τ)γ−1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

p̄1(τ)|v(x, τ)ΨN | dx dτ

≤ C

N3

t∫
s

θa(τ)γ−4

( ∫
B0(θa(τ))

|v(x, τ)|2 dx

) ∫
B0((N+1)θa(τ))\B0(Nθa(τ))

|v(x, τ)| dx dτ

≤ C∗M

N

t∫
s

θa(τ)γ−2

∫
B0(θa(τ))

|v(x, τ)|2 dx dτ, (2.13)

where C∗ ∈ (0,∞) is a universal constant.

Term involving p̄2. We estimate this term using Hölder’s inequality for Lorentz spaces, (2.1)
and (2.12),

t∫
s

θa(τ)γ−1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

p̄2(τ)|v(x, τ)ΨN | dx dτ

≤ C

N3

t∫
s

θa(τ)γ−4

( ∫
B0(2θa(τ))\B0(θa(τ))

|v(x, τ)|2 dy

) ∫
B0((N+1)θa(τ))\B0(Nθa(τ))

|v(x, τ)| dx dτ

≤ CM3

N

t∫
s

θa(τ)γ−1 dτ

≤ CM3

a(γ + 1)N
θa(s)

γ+1.

Term involving p̄3. Observe that for this term, the singularity of the kernel is seen. Calderón-
Zygmund’s theorem gives for τ ∈ (− 1

16(N+1)2
, 0),

‖p̄3(·, τ)‖
L

3
2 ,∞(B0((N+1)θa(τ))\B0(Nθa(τ)))

≤ C‖v(·, τ)‖2
L3,∞(B0( 3

4

√
a)\B0(θa(τ)))

≤ CM2. (2.14)
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Then, by Hölder’s inequality for Lorentz spaces, interpolation of L3,1 between L2 and L6 [6,
Theorem 5.3.1], the Sobolev inequality and Young’s inequality,

t∫
s

θa(τ)γ−1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

p̄3(x, τ)|v(x, τ)ΨN | dx dτ

≤
t∫

s

θa(τ)γ−1‖p̄3(·, τ)‖
L

3
2 ,∞(B0((N+1)θa(τ))\B0(Nθa(τ)))

‖v(·, τ)ΨN‖L3,1(R3) dτ

≤ Cp̄3M
2

t∫
s

θa(τ)γ−
3
2‖ΨNv(·, τ)‖L2(R3) dτ + Cp̄3M

2

t∫
s

θa(τ)γ−
1
2‖∇(ΨNv(·, τ))‖L2(R3) dτ,

where Cp̄3 ∈ (0,∞) is a universal constant. Now, by the Cauchy-Schwarz and Young’s in-
equalities we have on the one hand

Cp̄3M
2

t∫
s

θa(τ)γ−
3
2 ‖ΨNv(·, τ)‖L2(R3)

≤ Ca,γM
4θa(s)

γ+1 +
aγ

16

t∫
s

θa(τ)γ−2‖ΨNv(·, τ)‖2
L2 dτ

and on the other hand

Cp̄3M
2

t∫
s

θa(τ)γ−
1
2 ‖∇(ΨNv(·, τ))‖L2(R3)

≤ Ca,γM
4θa(s)

γ+1 +
1

4

t∫
s

θa(τ)γ‖∇(ΨNv(·, τ))‖2
L2 dτ.

Term involving p̄4. We have by Hölder’s inequality for Lorentz spaces and (2.12)

t∫
s

θa(τ)γ−1

∫
B0((N+1)θa(τ))\B0(Nθa(τ))

p̄4(τ)|v(x, τ)ΨN | dx dτ

≤ CN2M

(
√
a)3

t∫
s

θa(τ)γ+1

( ∫
B0( 3

4

√
a)\B0( 1

2

√
a)

[
|v|2 + |p|

]
dx

)
dτ

≤ CSMN2

(
√
a)3

θa(s)
γ+1,

where

S =

0∫
−1

( ∫
B0( 3

4

√
a)\B0( 1

2

√
a)

[
|v|3 + |p|

3
2

]
dx

) 2
3

<∞.
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2.2. Local energy estimates under a priori critical control outside of the paraboloid. We
recall that M ≥ 1 and N ≥ 4. Summarizing the pressure estimates above we get, for all
s ∈ (− 1

16(N+1)2
, 0) and for all t ∈ (s, 0], first θa(s) ≤

√
a

4(N+1)
and then

∣∣KII(s)
∣∣ ≤ CM

N

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv‖2

2 dτ +
aγ

16

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv(·, τ)‖2

L2 dτ

+
1

4

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv(·, τ))‖2

L2 dτ + Ca,γ(M
4 + SMN2). (2.15)

Similarly, for KI(s), using in particular (2.5), we get

∣∣KI(s)
∣∣ ≤ aγ

16

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv(·, τ)‖2

L2 dτ +
1

4

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv(·, τ))‖2

L2 dτ

+ Ca,γ(M
4 +M2N2). (2.16)

Then, from (2.7) combined with (2.16) and (2.15), we find for s ∈ (− 1
16(N+1)2

, 0), and t ∈
(s, 0],

θa(t)
γ

θa(s)γ+1
‖ΨNv(·, t)‖2

2 +
aγ

4

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv‖2

2 dτ +

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ

≤ 1

θa(s)
‖ΨNv(·, s)‖2

2 +
C∗M

N

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv‖2

2 dτ

+ Ca,γ(M
4 + SMN2 +M2N2). (2.17)

where C∗ ∈ (0,∞) is the universal constant in (2.13).

Let us emphasize that the gain of the factor N−1 in the term C∗M
N

t∫
s

θa(τ)γ−2

θa(s)γ+1 ‖ΨNv‖2
2 plays a

crucial role below. Taking N large makes it possible to make C∗M
N

small; see (3.15).

3. SCALE-INVARIANT BOUNDS ON THE INTERIOR OF THE PARABOLOID

The objective of this section is to prove the following result.

Proposition 3.1. Let M ≥ 1. Let v be a finite-energy weak solution to the Navier-Stokes
equations (1.1) in R3 × (−1, 0) such that v ∈ C∞(−1, T ;C∞(R3)) for all T ∈ (−1, 0).
Assume that

ess sup
s∈(−1,0)

‖v(·, s)‖L3,∞(B0(
√
a)\B0(θa(s))) ≤M.

Then,

ess sup
s∈(−1,0)

1

θa(s)

∫
B0(θa(s))

|v(x, τ)|2 dτ < +∞. (3.1)

We shall connect information between critical quantities in order to rewrite the time weighted
energy estimates as a differential inequality. Let us denote

f(s) :=
1

θa(s)
‖ΨNv(·, s)‖2

2 (3.2)
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and for all γ ∈ R we define8

gγ(s, t) :=

t∫
s

θa(τ)γ−1

θa(s)γ+1
f(τ) dτ. (3.3)

We compute the s derivative of gγ(·, t),

∂gγ
∂s

(s, t) =
a(γ + 1)

2
θa(s)

−(γ+3)

t∫
s

θa(τ)γ−2‖ΨNv(·, τ)‖2
2 dτ − θa(s)−(γ+1)θa(s)

γ−1f(s)

= θa(s)
−2

[
a(γ + 1)

2
gγ(s, t)− f(s)

]
. (3.4)

Now, let us rewrite (2.17) so as to make the functions f and gγ appear,

θa(t)
γ+1

θa(s)γ+1
f(t) +

aγ

4
gγ(s, t) +

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ

≤ f(s) +
C∗M

N
gγ(s, t) + Ca,γ(M

4 + SMN2 +M2N2).

(3.5)

Finally, we replace the identity (3.4) in (3.5) to get for s ∈ (− 1
16(N+1)2

, 0), and t ∈ (s, 0],

θa(t)
γ+1

θa(s)γ+1
f(t) + θa(s)

2∂gγ
∂s

(s, t)−
(a

2

(γ
2

+ 1
)

+
C∗M

N

)
gγ(s, t) +

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ

≤Ca,γ(M4 + SMN2 +M2N2).
(3.6)

where C∗ ∈ (0,∞) is the universal constant in (2.13).

3.1. Gaining control through a Friedrich’s type estimate. We demonstrate the following
Poincaré-type inequality

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ ≥ Λgγ(s, t)− CΛNM
2

for some Λ > a
2

and a constant CΛ ∈ (0,∞) depending on Λ; see (3.13) below. For that, we
adapt the computations made in [24] by Neustupa to the weighted energy norms used in our
work.

Step 1: a partition of the test function ϕN . Consider ξ ∈ (0, 1) and a test function ϕξ1 defined
as

ϕξ1(x) =

 1 if |x| < 1 + 1
4
ξ

∈ [0, 1] if 1 + 1
4
ξ < |x| < 1 + 3

4
ξ

0 if 1 + 3
4
ξ < |x|

and satisfying
|∇ϕξ1| ≤ 4ξ−1. (3.7)

Let us define ϕξN,2 := ϕN − ϕξ1. Moreover, we denote Ψξ
1(x, t) := ϕξ1( x

θa(t)
) and Ψξ

N,2 :=

ϕξN,2( x
θa(t)

). Thus, ΨN = Ψξ
1 + Ψξ

N,2 in view of (2.3).

8Notice that f and gγ are dimensionally critical in the sense of Caffarelli, Kohn and Nirenberg [9].
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Observe that

‖∇(Ψξ
1v)‖2

2 = ‖Ψξ
1∇v‖2

2 + 2
(
Ψξ

1∇v,∇(Ψξ
1)⊗ v

)
L2 + ‖∇(Ψξ

1)⊗ v‖2
2

≤ ‖∇v‖2

L2(supp(Ψξ1))
+

∫
R3

∂i
(
(Ψξ

1)2
)
vj∂ivj dx+ ‖∇(Ψξ

1)⊗ v‖2
2

≤ ‖∇(ΨNv)‖2
2 −

1

2

∫
R3

∆(Ψξ
1)|v|2 dx+ ‖∇(Ψξ

1)⊗ v‖2
2

Here we used that ΨN = 1 on the support of Ψξ
1. Thus,

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ ≥
t∫

s

θa(τ)γ

θa(s)γ+1
‖∇(Ψξ

1v)‖2
2 dτ − c1(s, t, a, ξ), (3.8)

where

c1(s, t, a, ξ) :=

t∫
s

θa(τ)γ

θa(s)γ+1

(
− 1

2

∫
supp(∇Ψξ1)

∆(Ψξ
1)|v|2 dx+ ‖∇(Ψξ

1)⊗ v‖2
2

)
dτ.

Using the fact that

∇Ψξ
1 =

1

θa(t)
∇ϕξ1

( x

θa(t)

)
,

we get

|c1(s, t, a, ξ)| ≤ C

ξ2

t∫
s

θa(τ)γ−2

θa(s)γ+1

∫
supp(∇Ψξ1)

|v(x, τ)|2 dx dτ,

and then using Hölder’s inequality for Lorentz spaces, we obtain

−c1(s, t, ξ) ≥ −Ca,a,γ,ξM2,

where Ca,γ,ξ ∈ (0,∞) is a constant depending on a, γ and ξ.

Step 2: a Poincaré inequality. Now, we need to manipulate the quantity ‖∇(Ψξ
1v)(·, τ)‖2

2. Con-
sider τ ∈ (− 1

16(N+1)2
, 0). Since ∫

B0((1+ξ)θa(τ))

∇(Ψξ
1) · v = 0,

we can use a right inverse of the divergence9 to infer that there exists a function

wξ(·, τ) ∈ W 1,2
0

(
B0((1 + ξ)θa(τ))

)
such that

∇ · wξ(·, τ) = ∇(Ψξ
1) · v(·, τ)

and
‖∇wξ‖L2(B0((1+ξ)θa(τ))) ≤ C‖∇(Ψξ

1) · v‖2,

9Such an operator is sometimes called a Bogovskii operator, see [15].
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where C ∈ (0,∞) does not depend on the parameters ξ, τ . Hence Ψξ
1v − wξ is divergence free

in B0((1 + ξ)θa(τ)) with zero trace on the boundary. By Poincaré’s inequality for trace-free
divergence-free functions, we have

‖Ψξ
1v − wξ‖L2(B0((1+ξ)θa(τ))) ≤

1√
λS(B0((1 + ξ)θa(τ)))

‖∇(Ψξ
1v − wξ)‖L2(B0((1+ξ)θa(τ))),

(3.9)
where λS(B0(r)) is the first eigenvalue of the Dirichlet-Stokes operator on B0(r).10 By homo-
geneity we find

1√
λS(B0((1 + ξ)θa(τ)))

=
(1 + ξ)θa(τ)√
λS(B0(1))

. (3.10)

Thus, using Poincaré’s inequality (3.9), the scaling property (3.10) and (3.7) we find

‖Ψξ
1v‖2 ≤ ‖Ψξ

1v − wξ‖L2(B0((1+ξ)θa(τ))) + ‖wξ‖2

≤ (1 + ξ)θa(τ)√
λS(B0(1))

‖∇(Ψξ
1v − wξ)‖L2(B0((1+ξ)θa(τ))) +

(1 + ξ)θa(τ)

π
‖∇wξ‖L2(B0((1+ξ)θa(τ)))

≤ (1 + ξ)θa(τ)√
λS(B0(1))

‖∇(Ψξ
1v)‖L2(B0((1+ξ)θa(τ))) +

C(1 + ξ)

ξπ
‖v‖L2(B0((1+ξ)θa(τ)))\B0(θa(τ))).

As we want to manipulate the square of ‖∇(Ψξ
1v)‖L2(B0(1+ξ)θa(τ)), we introduce a parameter

κ > 0 to get

‖Ψξ
1v‖2

2 ≤
(1 + ξ)2(1 + κ)θa(τ)2

λS(B0(1))
‖∇(Ψξ

1v)‖2
L2(B0((1+ξ)θa(τ))+Cξ,κ‖v‖2

L2(B0((1+ξ)θa(τ)))\B0(θa(τ))),

where Cξ,κ ∈ (0,∞) is a constant depending on ξ and κ.
Substituting this into (3.8) gives that for s ∈ (− 1

16(N+1)2
, 0) and t ∈ (s, 0],

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ ≥
λS(B0(1))

(1 + κ)(1 + ξ)2

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖Ψξ

1v‖2
2 dτ − c2(s, t, a, ξ, κ),

(3.11)

where,

c2(s, t, a, ξ, κ) =
Cξ,κλS(B0(1))

(1 + κ)(1 + ξ)2

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖v‖2

L2(B0((1+ξ)θa(τ))\B0(θa(τ))) dτ + c1(s, t, a, ξ).

By the same reasoning as for c1

−c2(s, t, a, ξ, κ) ≥ −Ca,γ,ξ,κM2,

where Ca,γ,ξ,κ ∈ (0,∞) is a constant depending on a, γ, ξ and κ. Now, we use the identity

‖Ψξ
1v‖2

2 = ‖ΨNv‖2
2 − 2

(
Ψξ
Nv,Ψ

ξ
N,2v

)
L2 + ‖Ψξ

N,2v‖
2
2

and (3.11) to get
t∫

s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ ≥
λS(B0(1))

(1 + κ)(1 + ξ)2

t∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv‖2

2 dτ − c3(s, t, a, ξ, κ),

(3.12)

10It is well known that λS(B0(1)) is greater than π2, the principal eigenvalue of the Dirichlet-Laplace operator.
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where,

c3(s, t, a, ξ, κ) =
λS(B0(1))

(1 + κ)(1 + ξ)2

t∫
s

θa(τ)γ−2

θa(s)γ+1

[
2(Ψξ

Nv,Ψ
ξ
N,2v)2 − ‖Ψξ

N,2v‖
2
2

]
dτ + c2(s, t, a, ξ, κ).

As Ψξ
N,2(·, τ) is supported on B((N + 1)θa(τ)) \B(θa(τ)), we have by Hunt’s inequality

−c3(s, t, a, ξ, κ) ≥ −Ca,γ,ξ,κNM2,

where the constant Ca,γ,ξ,κ ∈ (0,∞) depends on a, γ, ξ and κ. We finally find from (3.12), for
s ∈ (− 1

16(N+1)2
, 0) and t ∈ (s, 0],

t∫
s

θa(τ)γ

θa(s)γ+1
‖∇(ΨNv)‖2

2 dτ ≥
λS(B0(1))

(1 + κ)(1 + ξ)2
gγ(s, t)− Ca,γ,ξ,κNM2, (3.13)

where the constant Ca,γ,ξ,κ ∈ (0,∞) depends on a, γ, ξ and κ.

3.2. Gronwall estimate. With the Poincaré-type inequality obtained in (3.13), the estimate
(3.6) becomes for s ∈ (− 1

16(N+1)2
, 0), and t ∈ (s, 0],

θa(t)
γ+1

θa(s)γ+1
f(t) + θa(s)

2∂gγ
∂s

(s, t) +

(
λS(B0(1))

(1 + κ)(1 + ξ)2
− a

2

(γ
2

+ 1
)
− C∗M

N

)
gγ(s, t)

≤Ca,γ(M4 + SMN2 +M2N2) + Ca,γ,ξ,κNM
2.

Now, we drop the first term in the left hand side and we consider t = 0. Let us write

A :=
λS(B0(1))

(1 + κ)(1 + ξ)2
− a

2

(γ
2

+ 1
)
− C∗M

N

and
B := Ca,γ(M

4 + SMN2 +M2N2) + Ca,γ,ξ,κNM
2.

Thus, we study
d

ds
(gγ(·, 0))(s) +

A

θa(s)2
gγ(s, 0) ≤ B

θa(s)2
.

We multiply this equation by the function

k(s) =

(
θa(s)

θa(s0)

)− 2A
a

,

where s0 := − 1
32(N+1)2

. The function k(s) satisfies

dk

ds
(s) =

A

θa(s)2

(
θa(s)

θa(s0)

)− 2A
a

=
A

θa(s)2
k(s).

Then, we find
d

ds
(kgγ(·, 0)) (s) ≤ B

A

(
A

θa(s)2
k(s)

)
.

Let s ∈ [s0, 0). Integrating over [s0, s] and multiplying by k−1(s) we obtain

gγ(s, 0) ≤ gγ(s0, 0)
1

k(s)
+
B

A

(
1− 1

k(s)

)
. (3.14)

Estimate (3.14) will be useful in the next section to demonstrate Proposition 3.1. We want
A > 0 in order to have a damping effect, which will be achieved by taking ξ, κ small and N
large.
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3.3. Proof of Proposition 3.1. Our objective is to prove the boundedness of f . Here we take
γ = 1. We rely on the estimate (3.14). As a = λS(B0(1)) according to the choice made in
Theorem A,11 we first take 0 < κ, ξ � 1 and then the parameter N(M, ξ, κ) (see the definition
(2.3) of ΨN ) large enough to get

A =
λS(B0(1))

(1 + κ)(1 + ξ)2
− 3a

4
− C∗M

N
> 0. (3.15)

Hence, from (3.14), we obtain 1/k(s) goes to 0 when s ↑ 0. Thus, we get g1(·, 0) is bounded
on [s0, 0) with as defined above s0 = − 1

32(N+1)2
.

Now, we want to prove that f(s) is bounded. Take any t1 ∈ [ s0
2
, 0) and define s1 := 2t1.

Thus, s1 < t1 < 0 and

2(t1 − s1) = −s1 =
θa(s1)2

a
.

Moreover, for τ ∈ (s1, t1) we have

1√
2
θa(s1) = θa(t1) < θa(τ) < θa(s1) =

√
2θa(t1).

Then, we get

1

(t1 − s1)

t1∫
s1

f(τ)dτ ≤ 2a

θa(s1)2

t1∫
s1

f(τ)dτ ≤ 2a

0∫
s1

1

θa(s1)2
f(τ)dτ

= 2ag1(s1, 0).

We can find s′1 ∈ (s1, t1) such that

f(s′1) ≤ 1

(t1 − s1)

t1∫
s1

f(τ)dτ ≤ 2a sup
s∈[s0,0)

g1(s, 0). (3.16)

Inequality (3.5), with t = t1 and s = s′1, gives

1

2
f(t1) ≤ θa(t1)2

θa(s′1)2
f(t1)

≤f(s′1) +
C∗M

N
g1(s′1, 0) + Ca,γ(M

4 + SMN2 +M2N2)

≤2a sup
s∈[s0,0)

g1(s, 0) +
C∗M

N
g1(s′1, 0) + Ca,γ(M

4 + SMN2 +M2N2),

where we used (3.16) in the last line. Therefore f is bounded on a small non empty interval
[ s0

2
, 0), and eventually on (−1, 0) by using the boundedness of the energy for s ∈ (−1, s0

2
), i.e.

ess sup
s∈(−1,0)

1

θa(s)
‖ΨNv(·, s)‖2

2 <∞. (3.17)

This directly implies (3.1) which concludes the proof of Proposition 3.1.

11Here we see that any 0 < a < 4
3λS(B0(1)) works; see Footnote 3. We remark here that there is a possibility

to get the full range 0 < a < 4λS(B0(1)) as in [24]. Indeed, it suffices to choose different parameters in Young’s
inequality leading to (2.15) and (2.16). This results in a small parameter ε in front of the third term in the right
hand side of (2.15) and of the second term in the right hand side of (2.16). We do not carry out this technical
modification here so as to keep the number of parameters to a minimum.
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4. PROOF OF THE MAIN RESULTS

4.1. Case with axisymmetry. We prove (1.3) in Theorem A by contraposition. Hence, we
assume by contraposition that

ess sup
s∈(−1,0)

‖v(·, s)‖
L3,∞(B0(

√
a)\B0(

√
a(−s))) ≤M. (4.1)

There are two steps in this proof. Note that we only assume axisymmetry at the end of the
second step.

Step 1: control of a scale-invariant Morrey-type quantity. This step works without the assump-
tion of axisymmetry. We start form the control (3.17). Observe that for γ > −1,

ess sup
s∈(−1,0)

0∫
s

θa(τ)γ−2

θa(s)γ+1
‖ΨNv(τ)‖2

L2 dτ < +∞. (4.2)

By (4.2) we can now repeat the computations that lead to the estimate (2.17) with γ = 0. Hence,
we have (2.17) with γ = 0 and t = 0, i.e.

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)

0∫
s

‖∇(ΨNv)‖2
2

≤ ess sup
s∈(− 1

16(N+1)2
,0)

(
1

θa(s)
‖ΨNv(s)‖2

2 +
C∗M

N

0∫
s

θa(τ)−2

θa(s)
‖ΨNv‖2

2 dτ

)
+ Ca,γ(M

4 + SMN2 +M2N2).

Therefore,

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)
‖ΨNv(s)‖2

L2 +
1

θa(s)

0∫
s

‖∇(ΨNv)‖2
2 dτ < +∞.

By interpolation between L2 and L6, this implies that

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)2

0∫
s

∫
B0(
√
a)

|ΨNv(x, τ)|3 dx dτ < +∞. (4.3)

Therefore,

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)2

0∫
s

∫
B0(θa(τ))

|v(x, τ)|3 dx dτ < +∞. (4.4)

Moreover, the assumption (4.1) implies that for δ ∈ (0, 1
5
)

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)
5(1− 1+δ

2
)

0∫
s

∫
B0(θa(s))\B0(θa(τ))

|v(x, τ)|
5
2

(1+δ) dx dτ < +∞. (4.5)

Combining (4.4) and (4.5) yields

ess sup
r∈(0, 1

4(N+1)
)

1

r5(1− 1+δ
2

)

0∫
−r2

∫
B0(r)

|v|
5
2

(1+δ) dx dτ < +∞. (4.6)
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Step 2: conclusion. By [30, Theorem 6] (see also [31]), we have that (4.6) for 0 < δ � 1
implies the boundedness of

ess sup
r∈(0, 1

4(N+1)
)

(
ess sup
s∈(−r2,0)

1

r

∫
B0(r)

|v(x, τ)|2 dx dτ +
1

r2

0∫
−r2

∫
B0(r)

|v|3 dx dτ

+
1

r

0∫
−r2

∫
B0(r)

|∇v|2 dx dτ

)
< +∞. (4.7)

Let us now assume that v is axisymmetric. Then (4.7) and [28, Theorem 2.1] imply that (0, 0)
is a regular point.

4.2. General case without axisymmetry. We prove (1.2) in Theorem A by contraposition.
Hence, we assume by contraposition that

ess sup
s∈(−1,0)

‖v(·, s)‖
L3(B0(

√
a)\B0(

√
a(−s))) ≤M. (4.8)

There are two steps in this proof.

Step 1: control of a scale-invariant Morrey-type quantity. Note that (4.8) implies (4.1). Hence
estimate (4.3) holds. Combining (4.3) with (4.8) gives

ess sup
s∈(− 1

16(N+1)2
,0)

1

θa(s)2

0∫
s

∫
B0(
√
a)

|v(x, τ)|3 dx dτ < +∞. (4.9)

Step 2: conclusion. From (4.9) and a pigeonholing argument, we find a sequence of times
tk ∈ (− 1

16(N+1)2
, 0) such that tk ↑ 0 and

sup
k

∫
B0(
√
a)

|v(x, tk)|3 dx <∞.

Applying [1, Theorem 1.1] immediately yields that (0, 0) is a regular point.

APPENDIX A. KNOWN RESULTS ABOUT LORENTZ SPACES

Given a measurable subset Ω ⊆ Rd, let us define the Lorentz spaces. For a measurable
function f : Ω→ R define:

df,Ω(α) := µ({x ∈ Ω : |f(x)| > α}), (A.1)

where µ denotes the Lebesgue measure. The Lorentz space Lp,q(Ω), with p ∈ [1,∞), q ∈
[1,∞], is the set of all measurable functions g on Ω such that the quasinorm ‖g‖Lp,q(Ω) is finite.
Here:

‖g‖Lp,q(Ω) :=
(
p

∞∫
0

αqdg,Ω(α)
q
p
dα

α

) 1
q
, (A.2)

‖g‖Lp,∞(Ω) := sup
α>0

αdg,Ω(α)
1
p . (A.3)

It is known there exists a norm, which is equivalent to the quasinorm defined above, for which
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Lp,q(Ω) is a Banach space. For p ∈ [1,∞) and 1 ≤ q1 < q2 ≤ ∞, we have the following
continuous embeddings

Lp,q1(Ω) ↪→ Lp,q2(Ω) (A.4)
and the inclusion is known to be strict.

Our main tool in this paper is the following Hölder’s inequality for Lorentz spaces. The
statement below and proof can be found in Hunt’s paper [17, Theorem 4.5, p.271]; see also [26,
Theorems 3.4-3.5, page 141].

Proposition A.1. Suppose that 1 ≤ p, q, r ≤ ∞ and 1 ≤ s1, s2 ≤ ∞. Furthermore, suppose
that p, q, r, s1 and s2 satisfy the following relations:

1

p
+

1

q
=

1

r

and
1

s1

+
1

s2

=
1

s
.

Then the assumption that f ∈ Lp,s1(Ω) and g ∈ Lq,s2(Ω) imply that fg ∈ Lr,s(Ω), with the
estimate

‖fg‖Lr,s(Ω) ≤ C(p, q, s1, s2)‖f‖Lp,s1 (Ω)‖g‖Lq,s2 (Ω). (A.5)
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