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ABSTRACT. We establish a local-in-space short-time smoothing effect for the
Navier-Stokes equations in the half space. The whole space analogue, due to Jia
and Šverák [JŠ14], is a central tool in two of the authors’ recent work on quanti-
tative L3

x blow-up criteria [BP21]. The main difficulty is that the non-local effects
of the pressure in the half space are much stronger than in the whole space. As an
application, we demonstrate that the critical L3

x norm must concentrate at scales
∼
√
T ∗ − t in the presence of a Type I blow-up.
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1. INTRODUCTION

This paper is devoted to the study of local smoothing properties for the Navier-
Stokes equations {

∂tu−∆u+ u · ∇u+∇p = 0

div u = 0
(NS)

in the half space R3
+ with no-slip conditions on the boundary ∂R3

+.
Our results are motivated by the following general question: What initial data

produce smooth solutions? More specifically, we ask,

Is it possible to quantify smoothing effects in terms of local proper-
ties of the initial data?

This question has been subject to intense research in recent years for the three-
dimensional Navier-Stokes equations in the whole space, in the wake of the seminal
work [JŠ14]. In [JŠ14, Theorem 3.1], Jia and Šverák established a local-in-space
short-time smoothing effect in the context of local energy solutions to (NS) with data
of locally uniformly bounded energy that in addition belongs locally to a subcritical
space Lm(B1), m > 3. That result was generalized by two groups, roughly at the

Date: December 20, 2021.
1
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same time and independently, to critical spaces: on the one hand by Kang, Miura,
and Tsai [KMT21b] for data locally in L3(B1) by a compactness argument akin
to [JŠ14], and on the other hand by Barker and Prange [BP20a] for data locally
in L3, L3,∞, and B−1+3/p

p,∞ (B1), p ∈ (3,∞), by a Caffarelli–Kohn–Nirenberg-type
iteration [CKN82]. In either case, the critical norm is assumed to be small inB1. We
also refer to the works [BT20, KMT20, KMT21a] along the same line of research,
where further refinements are obtained.

Local-in-space short-time smoothing is a very useful and versatile tool for the
study of the Navier-Stokes equations in the whole space. It was originally intro-
duced in [JŠ14] to quantify the spatial asymptotics of the profile of (forward) self-
similar solutions; this was key to their existence result for large-data self-similar
solutions.1 More recently, it was exploited to prove norm concentration results near
potential singularities in the spirit of [BP20a]. Third, it is a key tool for the back-
ward propagation of certain scale-invariant quantities in the strategy of [BP21]; see
also the related work [Tao19], where quantitative estimates are obtained by back-
ward propagation of Fourier-based scale-invariant quantities, and [Pal21a, Pal21b].
This allowed the second and third authors of the present paper to develop a quanti-
tative version of Seregin’s L3 blow-up criterion [Ser12]. This is one motivation for
the present work.

One heuristic interpretation of local-in-space short-time smoothing is the follow-
ing: The nonlocal effects of the pressure do not substantially hinder the parabolic
smoothing properties of the Navier-Stokes equations, at least locally in space and
time (see (S) in [JŠ14, p. 234]). It is not clear at first sight that such a property holds,
even in R3. It is all the more difficult to prove such local smoothing properties in the
half space, for a number of fundamental reasons, related to the fact that the nonlocal
effects of the pressure are much stronger in R3

+ than in R3:

(1) The no-slip boundary condition for the velocity is responsible for strong ve-
locity gradients near the boundary and vorticity creation. The vorticity itself
does not satisfy a ‘standard’ boundary condition, though a nonlinear and non-
local boundary condition was derived in [Mae13]. As a consequence, as of now
there is still no proof of a Constantin and Fefferman-type geometric nonlinear-
ity depletion criterion [CF93] outside the critical setting. In the critical case,
i.e., under a Type I assumption, such a result was obtained in [GHM14] thanks
to the proof of a complicated Liouville theorem, and in [BP20b] via a new
strategy based on the stability of Type I singularities. The relationship between
boundary effects and potential singularity formation is discussed in [LT16].

(2) Contrary to the whole space, there are obstructions to spatial smoothing in
the half space for suitable solutions. This was demonstrated by an example of
Kang [Kan05] and of Seregin and Šverák [SS10]: in the local setting, there are
bounded flows with unbounded derivatives. Based on Kang’s example, Kang,

1Later, existence was also established by more elementary methods, see [BT17], based on a
Calderón-type splitting, and subsequent works. Forward self-similar solutions are intimately con-
nected to the non-uniqueness of Leray-Hopf solutions [JŠ15, GŠ17, ABC21]. The works [Tsa14,
KMT21b] further apply localized smoothing to the spatial asymptotics of λ-discretely self-similar
solutions with scaling factor λ ≈ 1.
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Lai, Lai and Tsai [KLLT20, KLLT21] were able to construct a globally finite-
energy solution to Navier-Stokes with a localized flux on the boundary and
unbounded gradient everywhere on the boundary away from the flux.

(3) In the half space the pressure can be decomposed into a Helmholtz part and
a harmonic part. This decomposition is the key to the resolvent pressure for-
mulas obtained in the paper [MMP19] inspired by the work [DHP01]. Koch
and Solonnikov [KS02] showed that there are examples of Stokes systems in
the half space with divergence-form source term ∇ · F for which the harmonic
pressure is not integrable in time. Hence in short, p 6' u⊗ u for the half space,
contrary to the whole space. This issue brought about considerable difficulties
in the work [BP20b] when clarifying the relationship between different notions
of Type I singularities in the half space; see also the discussion on page 5 above
Theorem 1.4. A way to circumvent the difficulty was to rely on ‘fractional pres-
sure estimates’ pioneered in the work [CK18] and reproved in [BP20b] via the
formulas of [MMP19].

(4) The pressure associated to the Stokes resolvent problem in a bounded domain
Ω with no-slip boundary condition and source term f satisfies the following
bound:

‖p‖L2(Ω) .α |λ|−α‖f‖L2(Ω), for α ∈ [0, 1/4) (1.1)

as showed in [NS03, TW20]. In [Tol20] the optimality of the threshold 1/4 is
established. Notice that the power α in estimate (1.1) breaks the natural scal-
ing of the equations in the whole space, where α = 1/2. Let us emphasize
though that in a bounded domain there is no such scale-invariance. The bound
(1.1) turns, via Dunford’s formula, into a short-time estimate for the pressure
associated to the unsteady Stokes problem with a singularity O(t−3/4−δ) for
δ > 0. This singularity is consistent with the short-time estimates obtained in
[MMP19, Proposition 2.1]; see Lemma 2.1 below.

In spite of these difficulties, the Navier-Stokes equations in the half space prove
to have sufficiently good localization properties to be able to establish the following
results. As in [JŠ14], we prove local smoothing at the level of local energy solutions.
In the half space, these solutions were developed in [MMP19], see specifically Def-
inition 1.1 in [MMP19]. Recall

‖u0‖2
L2

uloc(R3
+) := sup

x0∈R3
+

∫
B(x0)∩R3

+

|u0|2 dx . (1.2)

We also assume the decay condition

lim
|x0|→+∞

x0∈R3
+

∫
B(x0)∩R3

+

|u0|2 dx = 0 . (1.3)

Let x0 ∈ R3
+ and T > 0. Define ΩR(x0) := BR(x0) ∩ R3

+.2

Theorem 1.1 (Localized smoothing, global setting). Let u be a local energy solu-
tion on R3

+× (0, T ) with initial data u0 satisfying ‖u0‖L2
uloc(R3

+) ≤M and the decay
condition (1.3).

2For further notations, we refer to the last subsection of the ‘Introduction’.
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Let ‖u0‖Lm(Ω3(x0)) ≤ N with m ∈ [3,+∞). If m = 3, we further require the
smallness condition N ≤ N0 � 1.

Then there exists S = S(M,N,m) ∈ (0, 1] satisfying the following property:
For S̄ = min(S, T ), we have

sup
t∈(0,S̄)

t
3

2m‖u(·, t)‖L∞(Ω1(x0)) .m N +NCm (1.4)

for a constant Cm ≥ 1.

Remark 1.2 (Subcritical refinements). Under the hypotheses of Theorem 1.1, if
additionally m > 3, then the following hold:

♦ For all p ∈ [m,+∞], we have

sup
t∈(0,S̄)

t
3
2( 1

m
− 1
p)‖u(·, t)‖Lp(Ω1(x0)) .m N +NCm . (1.5)

♦ When M,N ≥ Cuniv > 0, we have

S = O(1)M−O(1)N−O(1) . (1.6)

The property (1.5) is a consequence of the decomposition (1.16) of u into a strong
solution a with Lm initial data and a Hölder-continuous remainder v.

Our main application is the following concentration result, analogous to [BP20a,
Theorem 2].

Theorem 1.3 (Global concentration). Let T ∗ > 0. Let u be a local energy solution
on R3

+×(0, T ∗). Suppose that u is locally bounded on R3
+×[0, T ∗) and that (x∗, T ∗)

is a singular point of u, where x∗ ∈ R3
+.

Moreover, suppose that the singularity is Type I in the following global sense: for
some r0 ∈ (0,

√
T ∗],

sup
x∈R3

+

sup
0<r≤r0

r−
1
2‖u‖L∞t L2

x(Ωr(x)×(T ∗−r2,T ∗)) ≤M. (1.7)

Then there exists t̄ = t̄(T ∗,M, r0) ∈ [T ∗ − r2
0, T

∗) such that for all t ∈ [t̄, T ∗),
we have the following concentration of the critical L3 norm:

‖u(·, t)‖L3(ΩR(t)(x
∗)) > N0, (1.8)

where

R(t) := 3×

√
T ∗ − t
S(M)

, (1.9)

and S(M) = S(M,N0, 3) and N0 are as in Theorem 1.1.

The proof is an immediate consequence of Theorem 1.1 and a rescaling proce-
dure, so we summarize it here:

Proof of Theorem 1.3. Define t̄ = T ∗ − S(M)r2
0. As in [BP20a, Section 4.2], we

prove the contrapositive. Suppose that, for some t ∈ [t̄, T ∗), the concentration in-
equality (1.8) is violated. We time-translate and rescale (under the Navier-Stokes
scaling symmetry) the solution u so that the time interval (t, T ∗) becomes (0, S) in
the new variables. Let x̃∗ be the image of x∗ under this transformation. Thanks to
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the global Type I bound (1.7) and the definition of t̄, the new solution ũ satisfies
‖ũ(·, 0)‖L2

uloc(R3
+) ≤ M . Moreover, by the violation of (1.8) and the definition of

R(t), we have the smallness of the critical L3 norm in Ω3(x̃∗): ‖ũ(·, 0)‖L3(Ω3(x̃∗)) ≤
N0. Hence, ũ satisfies the assumptions of Theorem 1.1. We conclude that ũ is
bounded in a parabolic neighborhood of (x̃∗, S), so u is bounded in a parabolic
neighborhood of (x∗, T ∗). �

The most classical notion of Type I, corresponding to the ODE blow-up rate in
semilinear heat equations, is in terms of the sup-norm: ‖u(·, t)‖L∞(R3

+) ∼ (T ∗ −
t)−1/2. On the other hand, this terminology occasionally refers to boundedness of
some scaling-invariant quantity at the blow-up time, for example, ‖u(·, t)‖L3,∞(R3

+) .
1. The assumption (1.7) is a weak form of Type I, adapted to the scaling-invariant
energy. For Leray-Hopf solutions, (1.7) is implied by the L∞ and L3,∞ conditions,
though this is not trivial, see [BP20b, Theorem 2] for the precise statement with
boundary and [AB19] for a discussion without boundary.

It is also possible to prove local versions of the above theorems wherein the
global background assumption ‖u0‖L2

uloc(R3
+) ≤M is replaced by a local assumption

on the solution u itself.

Theorem 1.4 (Localized smoothing, local setting). Let (u, p) be a Navier-Stokes
solution on Ω3(x0)× (0, T ) satisfying

‖u‖L∞t L2
x(Ω3(x0)×(0,T )) + ‖∇u‖L2

t,x(Ω3(x0)×(0,T )) + ‖p‖
L
ζt
t L

ζx
x (Ω3(x0)×(0,T ))

≤M ,

(1.10)
where (ζx, ζt) is a fixed pair of exponents specified in Section 2.3

Suppose that u(·, t) vanishes on ∂Ω3(x0)∩ ∂R3
+ for all t ∈ (0, T ) and that (u, p)

satisfies the local energy inequality.
Let ‖u0‖Lm(Ω3(x0)) ≤ N with m ∈ [3,+∞). If m = 3, we further require the

smallness condition N ≤ N0 � 1. Suppose that u(·, t) t→0+

−→ u0 in L2(Ω3(x0)).
Then there exists S = S(M,N, n) ∈ (0, 1] satisfying the following property: for

S̄ = min(S, T ), we have

sup
t∈(0,S̄)

t
3

2m‖u(·, t)‖L∞(Ω1(x0)) .m N +NCm (1.11)

for a constant Cm ≥ 1.

This kind of refinement first appeared in [KMT21b, Theorem 1.1] without bound-
ary.

As a consequence of Theorem 1.4, we have the following localized concentration
theorem. We focus on near-boundary concentration below. To our knowledge, this
type of localized concentration theorem is new even in the absence of boundary.

Theorem 1.5 (Localized concentration). Let (u, p) be a suitable weak solution on
Q+

4 , in the sense of Definition 2.2, satisfying

‖∇u‖L2
t,x(Q+

4 ) + ‖p‖
L

3
2
t,x(Q+

4 )
≤M0 (1.12)

3This ensures, among other things, that up ∈ L1(Ω3(x0)× (0, T )).
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and
sup

(y0,s0)∈Q+
3

sup
0<r≤1

r−
1
2‖u‖L∞t L2

x(Ωr(y0)×(s0−r2,s0)) ≤ A0. (1.13)

Suppose moreover that u is locally bounded on B+
4 × (−1, 0) and that (x∗, 0) ∈

B+ × {0} is a singular point of u.
Then the above assumptions imply that there exists M(M0, A0) > 0, t̄(M) ∈

(−16, 0) and S(M) ∈ (0, 1] such that for all M0 and A0 sufficiently large4 the
following holds true. For every t ∈ [t̄(M), 0), we have the following concentration
of the critical L3 norm:

‖u(·, t)‖L3(ΩR(t)(x
∗)) > N0, (1.14)

where

R(t) := 3×

√
−t

S(M)
. (1.15)

In the above,M(M0, A0) is as in Proposition 5.1. Furthermore, S(M) = S(M,N0, 3)
and N0 are as in Theorem 1.4.

Strategy of the proof. We begin by explaining the subcritical case m > 3. The
general strategy is as in [JŠ14]. We decompose the solution u as

u = a+ v, (1.16)

where a is a strong solution of the Navier-Stokes equations with (sub)critical initial
data a0 satisfying a0 ≡ u0 in B2 and a0 ≡ 0 outside B3. The remainder v satisfies
a perturbed Navier-Stokes equation (NSa), which has lower order terms, and initial
data v0 satisfying v0|B2 ≡ 0. We then develop an ε-regularity criterion for the per-
turbed equation up to the initial time in order to establish that v is Hölder continuous
up to the initial time.5 Recall that in the whole space, an ε-regularity criterion up
to the initial time will ‘kick in’ on short times because the energy controls ‖u‖

L
10/3
t,x

whereas ε-regularity requires smallness of ‖u‖L3
t,x

.6

It is standard that ε-regularity also depends on the pressure p, and a typical choice
of quantity is ‖p‖L3/2 .7 These choices are convenient for treating the term

∫
up dx dt

in the local energy inequality. This brings us to our first difficulty, namely, that for
solutions of the linear Stokes equations in the half space with initial data in L2, the
pressure estimates are only known in L4/3−

t,loc L
2
x. Notice the low time integrability.

4This means that there exists a universal constant Nuniv ∈ [1,∞) such that for all M0 ≥ Nuniv

and A0 ≥ Nuniv we have the result.
5In general, it is an interesting observation that the special structure of the energy inequality

allows one to localize the solution under a supercritical background assumption, namely, control on
the energy. Naı̈vely, to localize a solution to a nonlinear partial differential equation (PDE) without
any such structure, one would require that the solution belongs to a critical space.

6In four dimensions, although L3
t,x is ‘critical for the energy inequality,’ one can imagine a va-

riation on localized smoothing under the additional assumption M � 1.
7In the interior case, there is a way to introduce a ‘local pressure’, due to Wolf [Wol17], see

also Kwon [Kwo21, Theorem 1.6], which contains an application to interior localized smoothing
in a bounded domain. We expect that these arguments cannot be extended to the pressure at the
boundary.
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We already mentioned this in connection with (1.1). Therefore, we must prove ε-
regularity for the perturbed system (NSa) under a new assumption on the pressure.
Essentially, we require smallness of p ∈ L1+δt

t L2−δx
x with 0 < δx � δt � 1. Our

velocity assumption, which has the Hölder conjugate exponents, compensates for
the low time integrability but remains controlled, with room to spare, by the energy
spaceL∞t L

2
x∩L2

tH
1
x. Our precise assumptions are discussed in (2.9). Our subcritical

ε-regularity criterion is Proposition 3.1.
Concerning implementation of the ε-regularity criterion, there are at least three

strategies:

♦ Direct iterative method of Caffarelli–Kohn–Nirenberg [CKN82]. Variations were
exploited by Barker-Prange [BP20a] with critical lower order terms and by Dong-
Gu [DG14] with boundary and Bian Wu [Wu21] in dimension n = 4

♦ Lin’s compactness method [Lin98], see also Seregin-Ladyzhenskaya [LS99]. This
was adapted by Jia-Sverak [JŠ14] and Kang-Miura-Tsai [KMT21b] to accomo-
date (sub)critical lower order terms.

♦ De Giorgi-type method, as implemented by Vasseur [Vas07] (see also Wang-
Wu [WW14] in dimension n = 4).

Our approach is to adapt Lin’s compactness method to the new quantities. We de-
scribe the main idea in Section 3, in a way which we hope is suitable for newcomers,
once we have defined the necessary quantities Y (R) and Yosc(R). For now, we men-
tion that Lin’s method is actually comprised of two compactness arguments: one for
Y (R) and one for Yosc(R).

There is a second difficulty, which concerns only the critical case m = 3 and
was also encountered in [BP20a, KMT21b]. In this case, the first compactness ar-
gument in Lin’s method still yields a subcritical Morrey bound ‘just below’ L∞ in
terms of Y (R), but the second compactness argument fails to improve the decay
of Yosc, the step which would yield Hölder continuity. This is because solutions of
the limiting system (3.80) are not guaranteed to be bounded, let alone Hölder con-
tinuous, when m = 3. In [BP20a], Barker and Prange overcome this difficulty by
using parabolic regularity theory to bootstrap the regularity of the perturbation v,
see (1.16), from subcritical Morrey toCα. In principle, this is also possible here, but
it is not necessary for our application. Rather, following [KMT21b], we combine
(i) the subcritical Morrey estimates for the perturbation v, (ii) the critical estimates
for a, and (iii) the standard ε-regularity criterion (without lower order terms) for u
to conclude the L∞-smoothing (1.4). Unlike [BP20a], we do not demonstrate that v
is Hölder continuous when m = 3.

Finally, a small novelty of our approach, compared to [KMT21b], is that we
build smallness of a into our compactness arguments, which completely bypasses
the estimates in [KMT21b, Section 4].

Notation. Let z0 = (x0, t0) ∈ R3+1 and R > 0. We define the ball BR(x0) :=
{x ∈ R3 : |x− x0| < R} and parabolic ball QR(z0) := BR(x0)× (t0 −R2, t0).

Recall that R3
+ := {(x1, x2, x3) ∈ R3 : x3 > 0}. If x0 ∈ ∂R3

+, we define
B+
R(x0) := BR(x0) ∩ R3

+ and Q+
R(z0) := B+

R(x0)× (t0 −R2, t0).
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We define ∂flatB
+
R(x0) := BR(x0) ∩ {d(x) = d(x0)}, where d(x) := x · e3 is the

signed distance to ∂R3
+. Similarly, ∂flatQ

+
R(z0) := ∂flatB

+
R(x0)× (t0 −R2, t0).

To simultaneously treat the interior and boundary scenarios, we introduce the
notation Bι

R(x0) and Qι
R(z0), where ι ∈ {int, bd}. Here, Bint

R (x0) = BR(x0) and
Bbd
R (x0) = B+

R(x0), with an analogous convention for parabolic balls Qι
R(z0).

When x0 = 0 (resp. z0 = 0,R = 1), we may omit x0 (resp. z0,R) from the above
notation. As defined above, ΩR(x0) := BR(x0) ∩ R3

+.
Often we do not distinguish between scalar- and vector-valued function spaces

in notation.
For vectors u and v, we write (u⊗ v)ij = uivj . For matrices F and G, we write

F : G =
∑

ij FijGij . For matrix-valued F , we write (divF )i =
∑

j ∂jFij .

2. PRELIMINARIES

We define8 the scaling exponent #(p, q), whenever (p, q) ∈ [1,∞]2, by

#(p, q) = −3

p
− 2

q
. (2.1)

If f ∈ L1
loc(R3+1), we have

‖f(λ·)‖LqtLpx(R3+1) = λ#(p,q)‖f‖LqtLpx(R3+1). (2.2)

Lemma 2.1 (Local energy and pressure estimates). Let M ≥ 1. Under the assump-
tions of Theorem 1.1, there exists a time

S1 & min(1,M−96) (2.3)

satisfying the following property. Let S̄1 = min(S1, T ). Then

sup
x0∈R3

+

(
sup

t∈(0,S̄1)

∫
Ω2(x0)

|u(x, t)|2 dx+

∫∫
Ω2(x0)×(0,S̄1)

|∇u|2 dx ds

)
.M2 (2.4)

and p satisfies

sup
x0∈R3

+

‖p− [p]Ω2(x0)‖
L

4
3 ,∞
t L2

x(Ω2(x0)×(0,S̄1))
.M2. (2.5)

In particular, it follows from (2.4) that whenever #(p, q) = −3/2 and q ∈
[2,+∞],

sup
x0∈R3

+

‖u‖LqtLpx(Ω2(x0)×(0,S̄1)) .M. (2.6)

The velocity estimate is a restatement of Corollary 5.9 and Proposition 5.7 in [MMP19].9

The pressure estimates are described in [MMP19, Propositions 2.1–2.3].
In the following, we writeQι = Qι

R(z0). We refer to the subsection ‘Notation’ of
the ‘Introduction’ where these parabolic cylinders and further notations are defined.

8More generally, we could define scaling exponents for a variety of homogeneous function spaces
to keep track of viable embeddings and interpolations. For example, #LqtL

p
x = #(p, q).

9See specifically the equation below (5.16) in that paper for the lower bound (2.3) on the time
S1. Notice that the notation M is different therein and may be fixed to M = 2.
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Let a ∈ L5
t,x(Qι). Consider the following perturbed Navier-Stokes equations:{

∂tv −∆v + (v + a) · ∇v + div(a⊗ v) +∇q = 0

div v = 0 .
(NSa)

Definition 2.2. We say that (v, q) is a suitable weak solution of (NSa) in Qι if the
following criteria are met:

(1) v ∈ L∞t L2
x ∩ L2

tH
1
x(Qι), q ∈ L1(Qι), and vq ∈ L1(Qι). If ι = bd, then also

v|∂flatQι = 0.
(2) (NSa) is satisfied in Qι in the sense of distributions.
(3) (Weak continuity in time) For all ϕ ∈ L2(Bι

R(x0)),(
t 7→

∫
BιR(x0)

v(x, t)ϕdx
)
∈ C(t0 + [−R2, 0]). (2.7)

(4) (Local energy inequality) For all non-negative Φ ∈ C∞0 (BR(z0)×(t0−R2,+∞))
and t ∈ (t0 −R2, t0),∫

BιR(x0)

|v(x, t)|2Φ(x, t) dx+ 2

∫∫
BιR(x0)×(−∞,t)

|∇v|2Φ dx ds

≤
∫∫

BιR(x0)×(−∞,t)
|v|2(∂t + ∆)Φ dx ds+

∫∫
BιR(x0)×(−∞,t)

(|v|2 + 2q)v · ∇Φ dx ds

+

∫∫
BιR(x0)×(−∞,t)

|v|2a · ∇Φ dx ds

+ 2

∫∫
BιR(x0)×(−∞,t)

a⊗ v : (Φ∇v + v ⊗∇Φ) dx ds.

(2.8)

Let ζ = (ζx, ζt) satisfying

ζx = 2− δx, ζt = 1 + δt, #ζ = −7

2
+ δ0, (2.9)

where 0 < δx, δt, δ0 � 1. These are the exponents for the pressure q. Let ξ =
(ξx, ξt) be its Hölder conjugate. Hence,

#ξ = −3

2
− δ0. (2.10)

These are exponents for the velocity v. In principle, the constants below may depend
on ζ and ξ. We consider them to be fixed in the following analysis.

We also require exponents for the perturbation a. Let m ∈ [3,+∞) and let
#(p1, q1) = −3/2 satisfying q1 ∈ (2,+∞) and 1/ζt = 1/2 + 1/q1 (in particular,
heuristically, q1 = 2+ and p1 = 6−). Let #(p2, q2) = −5/2 satisfying q2 = 2 − δ2

where 0 < δ2 � 1 (in particular, p2 = 2+). Similarly to ζ and ξ, we consider
p1, q1, p2, q2 as fixed and suppress dependence on them in the notation .. We write

‖a‖Am(Qι) = R1− 3
m‖a‖

L
5m/3
t,x (Qι)+

R#(p1,q1)+1‖a‖Lq1t Lp1x (Qι) +R#(p2,q2)+2‖∇a‖Lq2t Lp2x (Qι) .
(2.11)
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Notice that #(5m/3, 5m/3) = −3/m. We also define the Morrey-type space

‖a‖Mm(QR(z0)) = sup
Q̄

‖a‖Am(Q̄) (2.12)

where Q̄ ranges over parabolic balls Qr(z1) ⊂ QR(z0). Similarly,

‖a‖Mm(Q+
R(z0)) = sup

Q̄

‖a‖Am(Q̄) + sup
Q̄+

‖a‖Am(Q̄+), (2.13)

where Q̄ ranges over parabolic balls Qr(z1) ⊂ Q+
R(z0) and Q̄+ ranges over para-

bolic half-ballsQ+
r (z1) ⊂ Q+

R(z0) with z0 ∈ ∂flatQ
+. In particular, ‖a‖Am(QιR(z0)) ≤

‖a‖Mm(QιR(z0)) and ‖a‖Mm(Qιr(z0)) ≤ ‖a‖Mm(QιR(z0)) when r ∈ (0, R).
Finally, we demonstrate that, in the setting of the proof of Theorem 1.3, the co-

efficient a will belong to the desired Morrey spaces.

Lemma 2.3. Let m ∈ [3,+∞), u0 ∈ Lmσ (R3
+) with ‖u0‖Lm(R3

+) ≤ N , and a be
the strong solution on R3

+ × (0, Tm(u0)) constructed in Proposition A.1. Consider
a as extended backward-in-time by zero. Then, for all t0 ∈ (0, Tm) and interior and
boundary balls Qι

2(z0), where ι ∈ {int, bd} and z0 = (x0, t0), we have

‖a‖Mm(Qι2(z0)) .m N. (2.14)

Proof. Recall from (2.11) that ‖ · ‖Am in the definition of ‖ · ‖Mm is comprised
of three parts. The L5m/3

t,x part is controlled by (A.3). Regarding the remaining two
parts, we observe from (A.1) and (A.2) that

‖a‖
L
l1,∞
t L

s1
x (R3

+×(0,Tm))
+ ‖∇a‖

L
l2,∞
t L

s2
x (R3

+×(0,Tm))
.m N (2.15)

whenever s1, s2 ≥ m, #(s1, l1) = −3/m, and #(s2, l2) = −1 − 3/m. Apply-
ing Hölder’s inequality for Lorentz spaces in the time variable yields the desired
estimate when s1 = p1 and s2 = p2. �

3. ε-REGULARITY FOR PERTURBED NAVIER-STOKES SYSTEM

In this section, all constants are allowed to depend on m unless specified other-
wise.

Proposition 3.1 (Subcritical ε–regularity). Letm > 3. There exist εCKN, ᾱ > 0 sat-
isfying the following property. If (v, q) is a suitable weak solution of the perturbed
Navier-Stokes equations (NSa) on Qι in the sense of Definition 2.2 satisfying

‖v‖
L
ξt
t L

ξx
x (Qι)

+ ‖q‖
L
ζt
t L

ζx
x (Qι)

+ ‖a‖Mm(Qι) ≤ εCKN, (3.1)

then v ∈ C ᾱ
par(Q

ι
1/2) and

‖v‖Cᾱpar(Q
ι
1/2

) . ‖v‖Lξtt Lξxx (Qι)
+ ‖q‖

L
ζt
t L

ζx
x (Qι)

. (3.2)

In the Navier-Stokes context, the idea of ε-regularity is that, if a particular local
quantity is O(ε), then the non-linearity is O(ε2), and the solution should enjoy
the local regularity of solutions to the Stokes equations. This may be regarded as
a local perturbation theorem around the Stokes equations. While the quantity in
Proposition 3.1 may look arbitrary to a newcomer, the point is that it controls the
local energy, due to the local energy inequality (2.8).
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We now introduce some notation. If (v, q) is a suitable weak solution on Qι
R, we

define

Y ι(R, v, q) = R#ξ‖v‖
L
ξt
t L

ξx
x (QιR)

+R#ζ+1‖q − [q]BιR‖Lζtt Lζxx (QιR)
(3.3)

where [q]BιR = −
∫
BιR
q dx, and

Y ι
osc(R, v, q) = R#ξ‖v − (v)QιR‖Lξtt Lξxx (QιR)

+R#ζ+1‖q − [q]BιR‖Lζtt Lζxx (QιR)
(3.4)

where (v)QιR = −
∫
−
∫
QιR
v dx dt. Note thatRY ι(R, v, q) andRY ι

osc(R, v, q), rather than
Y ι and Y ι

osc themselves, have the critical scaling. The velocity term in Y ι(R, v, q)
has the same scaling as L∞.

To simplify, if the context is clear, we sometimes write Y (R) instead of Y (R, v, q),
and similarly for the quantities Yosc(R), Y +(R), and Y +

osc(R), etc. We sometimes
also consider the quantities centered at z0 and write Y (z0, R, v, q), etc.

With this notation, we can state the ε-regularity with critical lower order terms.

Proposition 3.2 (Critical ε–regularity). There exist εCKN, ᾱ > 0 satisfying the fol-
lowing property. Suppose that (v, q) is a suitable weak solution of the perturbed
Navier-Stokes equations (NSa) on Qι in the sense of Definition 2.2 satisfying

‖v‖
L
ξt
t L

ξx
x (Qι)

+ ‖q‖
L
ζt
t L

ζx
x (Qι)

+ ‖a‖M3(Qι) ≤ εCKN. (3.5)

Then, for the interior case, for all α ∈ [−1, 0), we have the subcritical Morrey
estimate

sup
z0,R

R−αY (z0, R, v, q) .α ‖v‖Lξtt Lξxx (Qι)
+ ‖q‖

L
ζt
t L

ζx
x (Qι)

, (3.6)

where z0 = (x0, t0), |x0| < 1/2, and R < 1/2 satisfy Q(z0, R) ⊂ Qι. Particular to
the boundary case ι = bd, we additionally have that for all α ∈ (0, ᾱ),

sup
z0,R

R−αY +(z0, R, v, q) .α ‖v‖Lξtt Lξxx (Q+)
+ ‖q‖

L
ζt
t L

ζx
x (Q+)

, (3.7)

where |x0| < 1/2, d(x0) = 0, R < 1/2, and Q+(z0, R) ⊂ Q+.

Summary of the method. Lin’s compactness method is in two steps:
Step 1. Morrey estimate, or, improve the growth of Y (R).10 The goal of this step

is to demonstrate that, for all α ∈ [−1, 0), smallness of Y (1) and the coefficient a
implies

Y (R) .α R
αY (1) for all R ≤ 1. (3.8)

Notice that the smaller α is, the closer v is to boundedness. We do not need to prove
this for all R ≤ 1 at once. Rather, we can show an improvement over a single scale,
from R = 1 to R = θ0, see Lemma 3.3. Afterward, one can iterate the one-scale
improvement to achieve the improvement for all scales, see Lemma 3.6.

To identify the good scale θ0, Lin employed a compactness/contradiction argu-
ment: If we have a sequence of solutions with Y (1, v(k), q(k)) ≤ εk → 0+ (which
also violate the conclusion), then the non-linearity is O(ε2

k). Since the coefficients
a(k) are O(εk), the lower order terms are also O(ε2

k). The normalized solutions

10Notice that the quantity Y (R) should not actually decay as R → 0+ unless the solution
vanishes.
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w(k) = v(k)/εk solve a Navier–Stokes-type equation whose non-linearity and lower-
order terms are O(εk). Hence, the limiting normalized solution (U, P ) satisfies the
Stokes equations. The better regularity of (U, P ) is used to identify a good scale
and yield the contradiction.

Step 2. Campanato estimate, or, improve the decay of Yosc(R). The goal of this
step is to demonstrate that, for all 0 < α� 1, smallness of Y (1) and the coefficient
a implies

Yosc(R) .α R
αYosc(1) for all R ≤ 1, (3.9)

since this estimate at every point is equivalent to Hölder continuity.
Again, it is enough to show the improvement over a single scale, see Lemma 3.5.

However, notice that smallness of Y (1), rather than Yosc(1), is required. The rea-
son is the following. If the mean (v)Q is very large, then we expect that the drift
carries information into the domain very quickly, which makes it more difficult
to localize the solution. Therefore, to iterate the oscillation lemma, we require the
scale-invariant Morrey estimate on Y (R), that is, (3.8) with α = −1, see the proof
of Lemma 3.6. This is why Lin’s method contains two separate compactness argu-
ments.

In the contradiction argument for the oscillation, one analyzes normalized so-
lutions v(k) after subtracting off the mean. This introduces a significant new term
(v(k))Q · ∇a(k)/εk, which may not converge to zero but rather contributes a forcing
term divF to the Stokes system for the limiting normalized solution (U, P ). When
a(k) ∈ L5m/3 is subcritical (m > 3), the solution (U, P ) is Hölder continuous, and
we can conclude. When m = 3, this argument fails, so we stop at Step 1.11

The above two steps are interior estimates. In the boundary setting, there is a
third step.

Step 3. Boundary Morrey estimate, see Lemma 3.4. Due to the no-slip conditions,
the quantity Y +(R) can decay as R → 0+, and one simply uses Y +(R) to control
Y +

osc(R).

Let α0 = 2− 2/ζt.

Lemma 3.3 (Interior Morrey estimate). Let m ≥ 3. Let (v, q) be a suitable weak
solution of (NSa) on Q in the sense of Definition 2.2. For all α ∈ [−1, 0), there
exist constants ε0, θ0 ∈ (0, 1) satisfying the following property. If

Y (1) + ‖a‖Am(Q) ≤ ε0, (3.10)

then
Y (θ0) ≤ θα0Y (1). (3.11)

The above lemma is typically iterated with α = −1, which corresponds to pro-
ducing a critical bound at small scales.

11One can construct unbounded solutions to the heat equation in three dimensions with forcing
div f , where f ∈ L5, and which belong to all Lp, p < +∞. The Stokes equations are likely no
better.
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Lemma 3.4 (Boundary Morrey estimate). Let m ≥ 3. Let (v, q) be a suitable weak
solution of (NSa) on Q+ in the sense of Definition 2.2. For all α ∈ (0, α0), there
exist constants ε+

0 , θ
+
0 ∈ (0, 1) satisfying the following property. If

Y +(1) + ‖a‖Am(Q+) ≤ ε+
0 , (3.12)

then
Y +(θ+

0 ) ≤ (θ+
0 )αY +(1). (3.13)

Notice that in the above lemma α is positive, contrary to Lemma 3.3. Let us stress
once again that this fact relies on the no-slip boundary condition for v.

Let α1 = min(α0, 1− 3/m).

Lemma 3.5 (Interior Campanato estimate). Let m > 3 and (v, q) be a suitable
weak solution of (NSa) on Q in the sense of Definition 2.2. For all α ∈ (0, α1),
there exist constants ε1, θ1 ∈ (0, 1) satisfying the following property. If

|(v)Q|+ Yosc(1) + ‖a‖L5m/3(Q) ≤ ε1, (3.14)

then
Yosc(θ1) ≤ θα1

(
Yosc(1) + |(v)Q|‖a‖L5m/3(Q)

)
. (3.15)

Notice that the smallness of the mean velocity |(v)Q| is not propagated to small
scales by Lemma 3.5. Rather, it is propagated by Lemma 3.3.

We also require a translated, rescaled, and iterated version of the same lemmas:

Lemma 3.6 (Iterated estimates). Let (v, q) be a suitable weak solution of (NSa) on
Qι
R(z0) in the sense of Definition 2.2. For all β ∈ [−1, 0) and α ∈ (0, α0), there

exist a constant ε̄ι0 > 0 satisfying the following property. If

RY ι(z0, R) + ‖a‖Mm(QιR(z0)) ≤ ε̄ι0, (3.16)

then, for all r ∈ (0, R), we have

Y ι(z0, r) .β (r/R)βY ι(z0, R). (3.17)

If also ι = bd, then
Y +(z0, r) .α (r/R)αY +(z0, R). (3.18)

Finally, when m > 3 and α ∈ (0, α1), we have

Y ι
osc(z0, r) .α (r/R)αY ι(z0, R) (3.19)

in the interior and boundary settings.

Proof of Lemma 3.3 and Lemma 3.4. We prove Lemma 3.3 and Lemma 3.4 in tan-
dem. Let ι ∈ {int, bd}. If ι = int, let α ∈ [−1, 0). If ι = bd, let α ∈ (0, α0).

1. Set-up. For contradiction, suppose that for each θ̄ ∈ (0, 1/2), there exists a
sequence (v(k), q(k)) of solutions to the perturbed Navier-Stokes equations in Qι

with lower order terms (a(k)) satisfying

εk := Y ι(1, v(k), q(k))→ 0+, (3.20)

‖a(k)‖Am(Qι) → 0 (3.21)
and

Y ι(θ̄, v(k), q(k)) > θ̄αεk. (3.22)
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In Step 6 below, θ̄ will be fixed according to the limit problem (which is independent
of (v(k), q(k))). To capture the leading order terms in the PDE satisfied by (v(k), q(k)),
we define

w(k) =
v(k)

εk
, π(k) =

q(k) − [q(k)]Bι

εk
. (3.23)

Then
Y ι(1, w(k), π(k)) = 1 (3.24)

and
Y ι(θ, w(k), π(k)) > θ̄α. (3.25)

Moreover, (w(k), π(k)) solves{
∂tw

(k) −∆w(k) + (εkw
(k) + a(k)) · ∇w(k) + w(k) · ∇a(k) +∇π(k) = 0

divw(k) = 0.
(3.26)

When ι = bd, we also require w(k) = 0 on ∂flatQ
+.

2. Energy estimates. Let 1/2 ≤ r < R ≤ 1 and φ ∈ C∞0 (QR) satisfying φ ≡ 1
on Qr, 0 ≤ φ ≤ 1 globally, and |∂tφ|+ |∇φ|2 + |∇2φ| . 1/(R− r)2. Let Φ = φ2.

The local energy inequality becomes∫
Bι
|w(k)(x, t)|2Φ(x, t) dx+ 2

∫∫
Bι×(−1,t)

|∇w(k)|2Φ dx ds

≤
∫∫

Bι×(−1,t)

|w(k)|2(∂t + ∆)Φ dx ds

+

∫∫
Bι×(−1,t)

(εk|w(k)|2 + 2π(k))w(k) · ∇Φ dx ds

+

∫∫
Bι×(−1,t)

|w(k)|2a(k) · ∇Φ dx ds

+ 2

∫∫
Bι×(−1,t)

a(k) ⊗ w(k) : (Φ∇w(k) + w(k) ⊗∇Φ) dx ds.

(3.27)

We have∫∫
Bι×(−1,t)

|∇(w(k)φ)|2 dx ds .
∫∫

Bι×(−1,t)

|∇w(k)|2Φ + |w(k)|2|∇φ|2 dx ds.

(3.28)
Together, (3.27) and (3.28) yield

sup
t∈(−1,0)

∫
Bι
|w(k)(x, t)φ(x, t)|2 dx+

∫∫
Qι
|∇(w(k)φ)|2 + |∇w(k)|2Φ dx ds

.
∫∫

Qι
|w(k)|2(|∂tΦ|+ |∆Φ|+ |∇φ|2) dx ds

+

∫∫
Qι

(εk|w(k)|2 + |π(k)|)|w(k)||∇Φ| dx ds

+

∫∫
Qι
|w(k)|2|a(k)||∇Φ| dx ds+

∫∫
Qι
|a(k)||w(k)||∇w(k)|Φ dx ds.

(3.29)
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In particular, Sobolev’s embedding and elementary interpolation in Lebesgue spaces
yield

C0‖w(k)φ‖2
LqtL

p
x(Qι) ≤ right-hand side of (3.29) (3.30)

as long as q ∈ [2,∞] and #(p, q) = −3/2. For example, we may set p = q = 10/3.
We now estimate each term on the right-hand side of (3.29). Immediately,∫∫
Qι
|w(k)|2(|∂tΦ|+ |∆Φ|+ |∇φ|2) dx ds+ 2

∫∫
Qι
|π(k)||w(k)||∇Φ| dx ds

.
Y ι(1, w(k), π(k))2

(R− r)2
.

(3.31)

Next, we estimate the terms involving a(k):∫∫
QιR\Qιr

|w(k)φ||w(k)||∇φ||a(k)| dx ds

.
1

R− r
‖w(k)‖L2(QιR\Qιr)‖w

(k)φ‖
L

10
3 (Qι)

‖a(k)‖L5m/3(Qι)

.
Y ι(1, w(k), π(k))2

(R− r)2
+ ‖w(k)φ‖2

L
10
3 (Qι)

‖a(k)‖2
L5m/3(Qι)

(3.32)

and∫∫
Qι
|a(k)||w(k)||∇w(k)|φ2 dx ds . ‖φ∇w(k)‖L2(Qι)‖w(k)φ‖

L
10
3 (Qι)

‖a(k)‖L5m/3(Qι).

(3.33)
Finally, we estimate the term12 involving |w(k)|3:

εk

∫∫
QιR\Qιr

|w(k)|3|∇Φ| dx ds

.
εk

R− r
‖w(k)‖

L
ξt
t L

ξx
x (QιR\Qιr)

‖w(k)‖2

L
2ζt
t L2ζx

x (QιR\Qιr)

.
εk

R− r
Y ι(1, w(k), π(k))‖w(k)‖2κ

LqtL
p
x(QιR\Qιr)

‖w(k)‖2(1−κ)

L2
t,x(QιR\Qιr)

.
O(1)

(R− r)
1

1−κ
+ ε

1
κ
k ‖w

(k)‖2
LqtL

p
x(QιR\Qιr)

.

(3.34)

where κ ∈ (0, 1), #(p, q) = −3/2, and q ∈ (2,+∞] is now fixed.13

12Similar computations arise in the De Giorgi–Nash–Moser theory for parabolic equations with
divergence-free drift b, specifically, in the treatment of the drift term in the proof of the Cacciopolli
inequality [AD21].

13The numerology is as follows: κ ∈ (0, 1) is chosen to satisfy

#(2ζx, 2ζt) = κ(−3/2) + (1− κ)(−5/2), (3.35)

which is possible because #(2ζx, 2ζt) = −7/4+δ0/2. Here,−3/2 is the scaling number associated
with the energy space and −5/2 = #(2, 2). Then (p, q) are defined by

1

2ζt
=
κ

q
+

1− κ
2

,
1

2ζx
=
κ

p
+

1− κ
2

. (3.36)

It follows from (3.35) and (3.36) that #(p, q) = −3/2 and q ∈ (2,+∞].
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Since
‖a(k)‖L5m/3(Qι) → 0 as k → +∞, (3.37)

various terms containing it may be absorbed into the left-hand side of (3.29). This
yields

sup
t∈(−r2,0)

∫
Bιr

|w(k)(x, t)|2 dx+

∫∫
Qιr

|∇w(k)|2 dx ds+ ‖w(k)‖2
LqtL

p
x(Qιr)

.
O(1)

(R− r)
1

1−κ
+ ε

1
κ
k ‖w

(k)‖2
LqtL

p
x(QιR\Qιr)

.

(3.38)

When k ≥ k0 � 1, we have εk � 1, so we may iterate the inequality (3.38)
‘outward’ along a well-chosen increasing sequence of scales rj , j = 0, 1, 2, . . .,
with r0 = 3/4 and rj → 1 as j → +∞, see [Giu03, p. 191, Lemma 6.1]. Hence,
when k � 1,

sup
t∈(−9/16,0)

∫
Bι

3/4

|w(k)(x, t)|2 dx+

∫∫
Qι

3/4

|∇w(k)|2 dx ds . 1. (3.39)

Therefore, along a subsequence (without relabeling):

w(k) ∗⇀ U in L∞t L
2
x ∩ L2

tH
1
x(Qι

3/4) (3.40)

π(k) ∗⇀ P in Lζtt L
ζx
x (Qι) (3.41)

and

sup
t∈(−9/16,0)

∫
Bι

3/4

|U(x, t)|2 dx+

∫∫
Qι

3/4

|∇U |2 dx ds+ Y ι(1, U, P ) ≤ 1. (3.42)

If ι = bd, we also have U |∂flatQ
+
3/4

= 0. Moreover, after analyzing the convergence
of each term in (3.26), we find{

∂tU −∆U +∇P = 0 in Qι
3/4

divU = 0 in Qι
3/4.

(3.43)

3. Time derivative estimates. Using the above estimates and

∂tw
(k) = ∆w(k) − div[(εkw

(k) + a(k))⊗ w(k) + w(k) ⊗ a(k)]−∇π(k), (3.44)

we estimate the time derivative:

‖∂tw(k)‖L1+ν
t W−1,1+ν

x (Qι
3/4

) . 1, (3.45)

where 0 < ν � 1. The Aubin–Lions lemma yields, up to a subsequence,14

w(k) → U in L2
t,x(Q

ι
3/4). (3.46)

By interpolation with the energy norm, we also have

w(k) → U in LqtL
p
x(Q3/4) (3.47)

when #(p, q) < −3/2 and q ∈ [2,+∞).

14The requisite chain of embeddings is H1(Bι1/2)
cpt
↪→ L2(Bι1/2) ↪→W−1,1+ν(Bι1/2).



LOCALIZED SMOOTHING AND CONCENTRATION IN THE HALF SPACE 17

4. Estimates for the limit equation. By (3.42) and local maximal regularity [Ser10,
Theorem 1.2] for the time-dependent Stokes equations (3.43) in Qι

3/4,

‖∂tU,∇2U,∇U,U,∇P‖
L
ζt
t L

p
x(Qι

1/2
)
.p 1 (3.48)

for all p ∈ [1,+∞), where Ehrling’s inequality [Gal11, p. 77] is used to estimate
∇U in terms of U and∇2U . In particular, parabolic Sobolev embedding into Hölder
spaces (see [AB20, Lemma B.1]) yields

‖U‖Cα′par(Q
ι
1/2

) .α′ 1 (3.49)

for all α′ ∈ (0, α0), where we recall that α0 = 2− 2/ζt. We claim that there exists
θ1 ∈ (0, 1/4) such that

θ#ξ‖U‖
L
ξt
t L

ξx
x (Qιθ)

≤ θα/8 (3.50)

for all θ ∈ (0, θ1]. Here, we will distinguish between the interior and boundary
cases. When ι = int, we took α ∈ [−1, 0), and (3.50) follows from ‖U‖L∞(Q1/2) .
1. When ι = bd, we took α ∈ (0, α0), and (3.50) follows from ‖U‖Cα′par(Q

+
1/2

) .α′ 1

for all α′ ∈ (α, α0) and the no-slip boundary condition.
Finally, by the strong convergence (3.47) of w(k) → U in Lξtt Lξxx (Qι

3/4),

lim sup
k→+∞

θ#ξ‖w(k)‖
L
ξt
t L

ξx
x (Qιθ)

≤ θα/4. (3.51)

5. Pressure estimates. Next, we decompose the pressure. Let

f (k) = εkw
(k) · ∇w(k) + a(k) · ∇w(k) + w(k) · ∇a(k). (3.52)

We will show
‖f (k)‖

L
ζt
t L

`x
x (Qι

3/4
)
→ 0 as k → +∞ (3.53)

where `x is defined by #(`x, ζt) = −4. We estimate term-by-term:

εk‖w(k) · ∇w(k)‖
L
ζt
t L

`x
x (Qι

3/4
)
. εk‖w(k)‖Lq1t Lp1x (Qι

3/4
)‖∇w(k)‖L2

t,x(Qι
3/4

) . εk → 0,

(3.54)
‖a(k)·∇w(k)‖

L
ζt
t L

`x
x (Qι

3/4
)
. ‖a(k)‖Lq1t Lp1x (Qι

3/4
)‖∇w(k)‖L2(Qι

3/4
) . ‖a(k)‖Am(Qι) → 0,

(3.55)
and

‖w(k) · ∇a(k)‖
L
ζt
t L

`x
x (Qι

3/4
)
. ‖w(k)‖LqtLpx‖∇a

(k)‖Lq2t Lp2x (Qι
3/4

) . ‖a(k)‖Am(Qι) → 0,

(3.56)
where #(p, q) = −3/2, 1/ζt = 1/q + 1/q2, and q ∈ [2,+∞] is fixed. Recall that
(p1, q1), (p2, q2) are defined above (2.11).

Consider the solution (w̃(k), π̃(k)) of the Stokes equations
∂tw̃

(k) −∆w̃(k) +∇π̃(k) = −χf (k) in R3
ι × (−1, 0)

div w̃(k) = 0 in R3
ι × (−1, 0)

w̃(k)(·,−1) = 0

(3.57)
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where R3
int = R3, R3

bd = R3
+, and χ ∈ C∞0 (R3+1) with χ ≡ 1 on Q5/8 and χ ≡ 0

outside ofQ3/4. When ι = bd, we impose also the no-slip condition w̃(k)|∂R3
+

(·, t) =

0 for all t ∈ (−1, 0). Global maximal regularity implies

‖∇π̃(k), ∂tw̃
(k),∇2w̃(k),∇w̃(k), w̃(k)‖

L
ζt
t L

`x
x (R3

ι×(−1,0))
→ 0 as k → +∞ (3.58)

and, by a Poincaré-Sobolev inequality, for all θ ∈ (0, 5/8],

‖π̃(k) − [π̃(k)]Bιθ‖Lζtt Lζxx (Qιθ)
→ 0 as k → +∞, (3.59)

since #ζ = −7/2 + δ0 < −3 = 1 + #(`x, ζt). Let

w
(k)
harm = w(k) − w̃(k), π

(k)
harm = π(k) − [π(k)]Bι − π̃(k). (3.60)

Then {
∂tw

(k)
harm −∆w

(k)
harm +∇π(k)

harm = 0 in Qι
5/8

divw
(k)
harm = 0 in Qι

5/8

(3.61)

with w(k)
harm|∂flatQ

+
5/8

= 0 in the boundary case. From (3.60) and the estimates (3.24),
(3.58) and (3.59), we know

‖w(k)
harm,∇w

(k)
harm‖L1+ν

t,x (Qι
3/4

) + ‖π(k)
harm − [π

(k)
harm]Bι

3/4
‖
L
ζt
t L

1+ν
x (Qι

3/4
)
. 1, (3.62)

where 0 < ν � 1. Local maximal regularity estimates for solutions of (3.61)
satisfying (3.62) imply

‖∇π(k)
harm‖Lζtt Lpx(Qι

1/2
)
.p 1 for all p ∈ [1,+∞). (3.63)

Now, by Poincaré’s inequality,

‖π(k)
harm − [π

(k)
harm]Bιθ‖Lζtt Lζxx (Bιθ×(−1/4,0))

. θ‖∇π(k)
harm‖Lζtt Lζxx (Bιθ×(−1/4,0))

.p θ
1+ 3

ζx
− 3
p

.p θ
|#ζ|−1θα0− 3

p .

(3.64)

In particular, whenever α < α0, there exists θ2 = θ2(α) ∈ (0, 1/4) such that, for all
θ ∈ (0, θ2] and k � 1, we have

θ#ζ+1‖π(k)
harm − [π

(k)
harm]Bιθ‖Lζtt Lζxx (Qιθ)

≤ θα

4
. (3.65)

Hence, using the strong convergence of π̃(k) in (3.59), we have

lim sup
k→+∞

θ#ζ+1‖π(k) − [π(k)]Bιθ‖Lζtt Lζxx (Qιθ)
≤ θα

4
. (3.66)

6. Contradiction. Let θι0 = min(θ1, θ2). Then, in light of (3.51) and (3.66), we
have

lim sup
k→+∞

Y ι(θι0, w
(k), π(k)) ≤ (θι0)α/2. (3.67)

Choosing θ̄ = θι0 at the beginning of the proof yields the desired contradiction. �
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Proof of Lemma 3.5. As in Lemma 3.3, we suppose otherwise. That is, for each
α ∈ (0, α1) and θ̄ ∈ (0, 1/2), there exists a sequence (v(k), q(k)) of solutions to the
perturbed Navier-Stokes equations in Q with lower order terms (a(k)) satisfying

εk := Yosc(1, v
(k), q(k)) + |(v(k))Q|‖a‖Am(Q) → 0+, (3.68)

|(v(k))Q| → 0, (3.69)

‖a(k)‖Am(Q) → 0, (3.70)
and

Yosc(θ, v
(k), q(k)) > εkθ

α. (3.71)
We define (w(k), π(k)) by subtracting off the mean velocity as follows:

w(k) =
v(k) − (v(k))Q

εk
, π(k) =

q(k) − [q(k)]B
εk

. (3.72)

Then
Y (1, w(k), π(k)) = Yosc(1, w

(k), π(k)) ≤ 1 (3.73)
and

Yosc(θ, w
(k), π(k)) > θα. (3.74)

The remainder of the proof is similar to the proof of Lemma 3.3, so we will sketch
some arguments. The main difference is that (w(k), π(k)) solves the perturbed Navier-
Stokes equations with two additional terms, namely, (v(k))Q · ∇w(k) and (v(k))Q ·
∇a(k)/εk:

∂tw
(k) −∆w(k) +

[
εkw

(k) + a(k) + (v(k))Q
]
· ∇w(k)

+

[
w(k) +

(v(k))Q
εk

]
· ∇a(k) +∇π(k) = 0, divw(k) = 0 .

(3.75)

The term (v(k))Q · ∇a(k)/εk requires special attention, since a priori it may not be
converging to zero. Indeed, upon passing to a subsequence, we have

Fk := a(k) ⊗ (v(k))Q
εk

⇀ F in L5m/3(Q), (3.76)

where ‖F‖L5m/3(Q) . 1. This contributes a term divF to the limiting PDE.
The new terms above contribute the following to the right-hand side of the local

energy inequality (3.27):∫∫
B×(−1,t)

|w(k)|2(v(k))Q · ∇Φ dx ds

+ 2

∫∫
B×(−1,t)

a(k) ⊗ (v(k))Q
εk

: [Φ∇w(k) + w(k) ⊗∇Φ] dx ds.

(3.77)

We estimate this quantity in the following way:∫∫
Q

|w(k)|2|(v(k))Q||∇Φ| dx ds . Y (1, w(k), π(k))2

R− r
|(v(k))Q|

(3.69)
.

o(1)

R− r
as k → +∞,

(3.78)
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and
1

εk

∫∫
Q

|a(k)||(v(k))Q|[Φ|∇w(k)|+ |w(k)||∇Φ|] dx ds

≤ C

εk
‖a(k)‖L5m/3(Q)|(v(k))Q|︸ ︷︷ ︸

O(1)

[
‖φ∇w(k)‖L2(Q) +

Y (1, w(k), π(k))

R− r

]

≤ Cγ−1 + γ‖φ∇w(k)‖2
L2(Q) +

C

R− r
,

(3.79)

where γ > 0 is a free parameter and we employ that Φ = φ2 ≤ φ. Choosing
0 < γ � 1, we may absorb γ‖φ∇w(k)‖2

L2(Q) into the left-hand side of (3.29) and
obtain the energy estimates as before.

The arguments concerning the time derivative apply nearly identically, so we next
analyze the velocity regularity. As mentioned above, the term divFk = (v(k))Q ·
∇a(k)/εk contributes to the limiting Stokes system satisfied by (U, P ):{

∂tU −∆U +∇P = − divF

divU = 0 .
(3.80)

Since ‖F‖L5m/3(Q) . 1 and m > 3, we may use a standard bootstrapping procedure
(see Lemma 2.2 in [JŠ14], for example) to prove

‖U‖Cα′par(Q1/2) .α′ 1 (3.81)

for all α′ ∈ (0, α1), where α1 = min(α0, 1− 3/m). By Campanato’s characteriza-
tion of Hölder spaces, for all α < α1, there exists θ2 = θ2(α) ∈ (0, 1/4] such that,
whenever θ ∈ (0, θ2],

θ#ζ‖U − (U)Qθ‖Lξtt Lξxx (Qθ)
≤ θα

4
. (3.82)

We now discuss the pressure estimates. We incorporate (v(k))Q · ∇w(k) into f (k):

f (k) = (εkw
(k) + (v(k))Q) · ∇w(k) + a(k) · ∇w(k) + w(k) · ∇a(k) . (3.83)

This new term can be estimated, for example, in the same way as εkw(k) · ∇w(k).
Again, f (k) converges strongly to zero in Lζtt L`xx (Qι

3/4) as k → +∞. We define and
estimate (w̃(k), π̃(k)) as before, but to accommodate the divFk term, we additionally
consider (ŵ(k), π̂(k)) solving

∂tŵ
(k) −∆ŵ(k) +∇π̂(k) = − div(χFk) in R3 × (−1, 0)

div ŵ(k) = 0 in R3 × (−1, 0)

ŵ(k)(·,−1) = 0 .

(3.84)

We have the representation formula

π̂(k) = (−∆)−1 div div(χFk) (3.85)

and ‖π̂(k)‖L5m/3(R3×(−1,0)) . ‖Fk‖L5m/3(R3×(−1,0)) . 1 by Calderón-Zygmund esti-
mates. Then

‖π̂(k) − [π̂(k)]Bθ‖Lζtt Lζxx (Qθ)
. θ|#ζ|−

3
m‖π̂(k)‖L5m/3(Qθ) , (3.86)
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and, in particular,

θ#ζ+1‖π̂(k) − [π̂(k)]Bθ‖Lζtt Lζxx (Qθ)
. θ1− 3

m . (3.87)

Finally, consider
π

(k)
harm = π(k) − [π(k)]Bι − π̃(k) − π̂(k) . (3.88)

Since L5m/3(Q) ⊂ Lζtt L
5m/3
x (Q), the regularity of π(k)

harm is dealt with as before to
obtain (3.65). By combining (3.87) and (3.65) with the strong convergence of π̃(k)

to zero, we conclude that whenever α < α1, there exists θ3 = θ3(α) ∈ (0, 1/4)
such that, for all θ ∈ (0, θ3], we have

lim sup
k→+∞

θ#ζ+1‖π(k) − [π(k)]Bθ‖Lζtt Lζxx (Qθ)
≤ θα

4
. (3.89)

Let θ1 = min(θ2, θ3). Combining (3.89) with the strong convergence w(k) → U in
Lξtt L

ξx
x (Q3/4) and the Hölder estimate (3.82) on U , we have

lim sup
k→+∞

Yosc(θ1, w
(k), π(k)) ≤ θα1

2
, (3.90)

which, upon setting θ̄ = θ1, yields the desired contradiction. �

Proof of Lemma 3.6. Without loss of generality, R = 1 and z0 = 0. Let ε > 0 and

Y ι(1) + ‖a‖Mm(Qι) ≤ ε. (3.91)

Recall that ‖a‖Mm(Qιr) ≤ ‖a‖Mm(Qι) when r ∈ (0, 1).
1. Boundary case. Let α ∈ (0, α0). If ε ≤ ε+

0 , then Lemma 3.4 implies

Y +(θ+
0 ) ≤ (θ+

0 )αY +(1), (3.92)

where ε+
0 , θ

+
0 ∈ (0, 1) are the constants in Lemma 3.4. In particular,

θ+
0 Y

+(θ+
0 ) + ‖a‖Mm(Q+

θ+0

) ≤ (θ+
0 )α+1Y +(1) + ‖a‖Mm(Q+)

≤ Y +(1) + ‖a‖Mm(Q+)

≤ ε+
0 ,

(3.93)

and therefore we may apply a rescaled version of Lemma 3.4 at scale θ+
0 . Iterating

in this fashion, we have

Y +((θ+
0 )k) ≤ (θ+

0 )kαY +(1) (3.94)

for all k ∈ N. Filling in the intermediary scales, we obtain

Y +(r) .α r
αY +(1) (3.95)

for all r ∈ (0, 1). Since Y +
osc ≤ 2Y +, we also have

Y +
osc(r) .α r

αY +(1), (3.96)

as desired.
2. Interior case. Let β ∈ [−1, 0). First, we prove a Morrey estimate as in the

boundary case. If ε ≤ ε0, then Lemma 3.3 (with α = β in the statement) and
reasoning as above yields

Y (r) .β r
βY (1). (3.97)
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Next, we estimate the oscillation, which is special to m > 3. Let α ∈ (0, α1).
Recall that α1 = min(1− 3/m, α0). In (3.97), we choose

γ = (α + α1)/2 ∈ (α, α1), β = γ − α1 ∈ [−1, 0). (3.98)

We choose 0 < ε�α 1 such that (3.97) implies

r|(v)Qr |+ rYosc(r) ≤ ε1/3 (3.99)

for all r ∈ (0, 1], where ε1 is as in Lemma 3.5 (with α = γ in the statement). We
also choose ε ≤ ε1/3. This means that the hypotheses of Lemma 3.5 are satisfied at
each scale r ∈ (0, 1], and we may freely apply it. We will show

Yosc(θ
k
1) ≤ 3θkα1 Y (1) (3.100)

for all k ≥ 0. With this in hand, one may fill in the remaining scales:

Yosc(r) .α r
αY (1), (3.101)

for all r ∈ (0, 1), as desired.
The base case Yosc(1) ≤ 3Y (1) of (3.100) is obvious. Assume (3.100) is valid for

k = k0 ≥ 0. Then a rescaled version of Lemma 3.5 (with α = γ in the statement)
and the inductive hypothesis yield

Yosc(θ
k0+1
1 ) ≤ θγ1

(
Yosc(θ

k0
1 ) + |(v)Q

θ
k0
1

| × θk0(1−3/m)
1 ‖a‖L5m/3(Q

θ
k0
1

)

)
≤ 3θγ1θ

k0α
1 Y (1) + C1θ

γ
1θ

k0(γ−α1)
1 Y (1)× θk0α1

1 ‖a‖L5m/3(Q)

≤ 3θ
(k0+1)α
1 Y (1)× (θγ−α1 + C1ε/3)

≤ 3θ
(k0+1)α
1 Y (1)

(3.102)

when 0 < ε�α 1. In the second inequality we used (3.97) with the choice of (γ, β)
in (3.98) and also α1 ≤ 1− 3/m. This completes the induction and the proof. �

Proof of Proposition 3.1. Let ε > 0 and

‖v‖
L
ξt
t L

ξx
x (Qι)

+ ‖q‖
L
ζt
t L

ζx
x (Qι)

+ ‖a‖Mm(Qι) ≤ ε. (3.103)

Let ᾱ = α1/2.
1. Interior case. When 0 < ε � 1, we may apply Lemma 3.6 with α = ᾱ on

Q1/2(z0) for all z0 ∈ Q1/2. The proof is completed by Campanato’s characterization
of Hölder continuity.

2. Boundary case. Ultimately, we wish to measure the oscillation of v inQr(z0)∩
Q+ for all z0 ∈ Q+

1/2 and r ∈ (0, 1/4]. We denote by d(z0) the x3-component of the
space-time point z0. For convenience, we write

E = ‖v‖
L
ξt
t L

ξx
x (Q+)

+ ‖q‖
L
ζt
t L

ζx
x (Q+)

. (3.104)

2a. Interior balls away from boundary strip (d(z0) ≥ 1/4). If 0 < ε � 1, we
may apply Lemma 3.6 with α = ᾱ onQ1/4(z0). Hence, for all r ∈ (0, 1/4], we have

Yosc(z0, r) . rᾱE . (3.105)
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2b. Boundary balls (d(z0) = 0). If 0 < ε � 1, we may apply Lemma 3.6 with
α = ᾱ on Q+

1/2(z0). This yields, for all r ∈ (0, 1/2],

Y +(z0, r) + Y +
osc(z0, r) . rᾱE . (3.106)

2c. Interior balls in the boundary strip (d(z0) ∈ (0, 1/4) and r ≤ d(z0)). Con-
sider the case when the balls just touch the boundary. We control these balls via
2b:

Y (z0, d(z0)) . Y +(z0 − d(z0)e3, 2d(z0)) . d(z0)ᾱE. (3.107)
That is, we double the radius of the ball and shift its center to the boundary. If
0 < ε� 1 (independently of z0), we may apply Lemma 3.6, whose hypotheses are
guaranteed by (3.107), onQd(z0)(z0) with α = ᾱ to obtain that, for all r ∈ (0, d(z0)],

Yosc(z0, r) . (r/d(z0))ᾱY (z0, d(z0))
(3.107)
. rᾱE. (3.108)

2d. Balls intersecting the boundary (d(z0) ∈ (0, 1/4) and r > d(z0)). Again, we
can reduce to 2b. Specifically,

r#ξ‖v − (v)Qr(z0)∩Q+‖
L
ξt
t L

ξx
x (Qr(z0)∩Q+)

. Y +(z0 − d(z0)e3, 2r) . rᾱE . (3.109)

In summary, when 0 < ε� 1, we have

r#ξ‖v − (v)Qr(z0)∩Q+‖
L
ξt
t L

ξx
x (Qr(z0)∩Q+)

. rᾱE (3.110)

for all r ∈ (0, 1/4] and z0 ∈ Q+
1/2. Note that c1r

5 ≤ |Qr(z0) ∩ Q+| ≤ c2r
5. Since

also ‖v‖L1(Q+) . E, Campanato’s criterion yields

‖v‖Cᾱpar(Q
+
1/2

) . E, (3.111)

as desired. �

Proof of Proposition 3.2. This is similar to the proof of Proposition 3.1 but sim-
pler in that one no longer needs to estimate the oscillation or apply Campanato’s
criterion. We omit the details. �

4. PROOF OF LOCALIZED SMOOTHING

Proof of Theorem 1.1 and Remark 1.2.
Step 0. Reduction to interior and boundary cases. First, we argue that it suffices

to demonstrate the theorem when d(x0) ≥ 3 (interior case) or d(x0) = 0 (boundary
case). The proof is by a covering argument:

(i) If d(Ω1(x0)) > 1, one covers Ω1(x0) with O(1) balls B1/6(y0) with cen-
ters y0 ∈ Ω1(x0). Notice that B1/2(y0) remains inside Ω3(x0). Then we apply the
rescaled interior case of the theorem on each B1/2(y0).

(ii) If d(Ω1(x0)) ≤ 1, one covers the strip Ω1(x0) ∩ {d(x) ≤ 1/12} by O(1)
boundary ballsB+

1/6(y0) with centers y0 = (y′0, 0) satisfying |y′0−x′0| ≤ 1. With this

choice, B+
1/2(y0) remains inside Ω3(x0). Away from the strip, one covers Ω1(x0) ∩

{d(x) ≥ 1/12} by O(1) balls B1/36(y0) with y0 ∈ Ω1(x0)∩{d(x) ≥ 1/12}, so that
B1/12(y0) remains inside Ω3(y0). Then we apply the rescaled interior and boundary
cases of the theorem on the above interior and boundary balls.
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Below, we write only the boundary case x0 ∈ ∂R3
+. The interior case is nearly

identical.
Step 1. Small data. Since u is a local energy solution on R3

+ × (0, T ), it satisfies
the local energy and pressure estimates in Lemma 2.1 on R3

+ × (0, S̄1). Let a0 be a
divergence-free localization15 with a0 ≡ u0 on B+

2 (x0), supported on B+
3 (x0), with

vanishing normal trace on ∂flatB
+
3 (x0), and such that

‖a0‖Lp(R3
+) .p ‖u0‖Lp(B+

3 ) for all p ∈ (1,m]. (4.1)

Proposition A.1 guarantees that a0 generates a mild solution a of the Navier-Stokes
equations satisfying the estimates (A.1)-(A.3) on R3

+ × (0, Tm) with u = a. In
particular, by Lemma 2.3, there exists 0 < N0 � 1 satisfying that, whenever N ≤
N0, we have

‖a‖Mm(B+
2 (x0)×(0,4)) ≤ εCKN/2. (4.2)

Let N ≤ N0. Let z denote the pressure associated to a. Then (a, z) is also a suitable
Leray-Hopf solution with ‖a0‖L2(R3

+) . M ; in particular, it is a local energy solu-
tion, so it satisfies the energy and pressure estimates in Lemma 2.1 on R3

+× (0, S̄1)
after possibly decreasing S̄1. Let

v = u− a, q = p− z. (4.3)

Then (v, q) is a suitable weak solution of the perturbed Navier-Stokes equations (NSa)
onB+

2 (x0)×(0, S̄1) with coefficient a,16 and since u(·, t), a(·, t)→ u0 inL2(B+
2 (x0))

as t→ 0+, v satisfies

‖v(·, t)‖L2(B+
2 (x0)) → 0 as t→ 0+ . (4.4)

Next, we use the estimates in Lemma 2.1 for the local energy solutions u and a,
the definition (4.3) of (v, q), and the triangle inequality to demonstrate that, for all
S ∈ (0, S̄1], we have

‖v‖
L
ξt
t L

ξx
x (B+

2 (x0)×(0,S))
+‖q−[q]B+

2 (x0)‖Lζtt Lζxx (B+
2 (x0)×(0,S))

. S
1
ξt
− 1
pM2+S

1
ζt
− 3

4M2,

(4.5)
whenever #(ξx, p) = −3/2 and M ≥ 1. In particular, the exponents on the right-
hand side may be taken positive. Therefore, we choose S ∈ (0, S1] satisfying

S = O(1)M−O(1)NO(1) (4.6)

where M ≥Muniv > 0 guarantees that S ≤ 1, and, with S̄ = min(S, T ),

‖v‖
L
ξt
t L

ξx
x (B+

2 (x0)×(0,S̄))
+ ‖q − [q]B+

2 (x0)‖Lζtt Lζxx (B+
2 (x0)×(0,S̄))

≤ εCKNN/2. (4.7)

Thanks to (4.4), we may extend (v, q) backward-in-time by zero as a suitable weak
solution to (NSa) on B+

2 × (S̄1− 4, S̄1). Hence, (4.7) guarantees that (v, q) satisfies

15Write a0 = φu0 + w0, where φ is an appropriate smooth cut-off function and w0, which
corrects the non-zero divergence, is obtained using Bogovskii’s operator [Bog80], see also Galdi’s
book [Gal11, Section III.3].

16A technical point is to ‘transfer’ the local energy inequality satisfied by the weak solution u and
the local energy equality satisfied by the strong solution a to the perturbed local energy inequality
for v. This type of argument is well known from the proof of weak-strong uniqueness.
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the ε-regularity criterion in Proposition 3.1 (m > 3) or Proposition 3.2 (m = 3) on
B+

2 (x0)× (S̄ − 4, S̄). When m > 3, we have

‖v‖Cᾱpar(B
+(x0)×(S̄−1,S̄)) . N. (4.8)

Step 2. Concluding for m = 3. When m = 3, we have a subcritical Morrey
estimate rather than a Cα estimate. To demonstrate the critical time-weighted L∞

smoothing in Theorem 1.1, we will defer to the ε-regularity theory for the solu-
tion (u, p) of the non-perturbed Navier-Stokes equations. At this point, it will be
convenient to specialize to x0 = 0 without loss of generality.

The subcritical Morrey estimates (with α = −1/2 in the statement of Proposi-
tion 3.2) are

sup
z′,R

RY (z′, R, v, q) . R1/2N (4.9)

where z′ = (x′, t′), |x′| < 1, and R < 1 satisfy QR(z′) ⊂ Q+
2 ((0, S̄)), and on the

boundary,
sup
z′,R

RY +(z′, R, v, q) . R1/2N, (4.10)

where |x′| < 1, d(x′) = 0, R < 1, and Q+
R(z′) ⊂ Q+

2 ((0, S̄)).
We also require estimates on (a, z). Since L3 embeds into L2

uloc, these can be
obtained from Lemma 2.1 and the scaling symmetry:

sup
γ∈(0,+∞)

sup
x1∈R3

+

γ#ξ+1‖a‖
L
ξt
t L

ξx
x (Ωγ(x1)×(0,γ2))

+ γ#ζ+2‖z − [z]Ωγ(x1)‖Lζtt Lζxx (Ωγ(x1)×(0,γ2))
. N , (4.11)

where N ≤ N0 is small enough to ensure that the strong L3 solution exists globally
and remains small.

Let t′ ∈ (0, S̄) and x′′ ∈ B+. Recall that S̄ ≤ 1. We consider a covering like
the one in the proof of Proposition 3.1: If d(x′′) >

√
t′/8, then we consider the

ball Q√t′/8(x′, t′) with x′ = x′′. If d(x′′) ≤
√
t′/8, then we consider the half-ball

Q+√
t′/4

(x′, t′) with x′ = x′′ − d(x′′)e3 (that is, the half-ball is spatially centered at
the projection of x′′ onto the flat boundary). In the former case, we appeal to (4.9)
and (4.11), whereas in the latter case, we appeal to (4.10) and (4.11). We write only
the latter case. We have

√
t′

4
Y +(z′,

√
t′/4, u, p) . N. (4.12)

By choosing N0 � 1, the right-hand side of (4.12) can be made to satisfy the
ε-regularity criterion in Proposition 3.1 for the non-perturbed Navier-Stokes equa-
tions (NS). Hence, u is Hölder continuous in Q+√

t′/8
(x′, t′),

t′1/2‖u‖L∞(Q+√
t′/8

(x′,t′)) . N (4.13)

and, in particular,
t′1/2|u(x′′, t′)| . N. (4.14)

Since (x′′, t′) ∈ B+ × (0, S̄) was arbitrary, the proof for m = 3 is complete.
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Step 3. Large data (m > 3). Without loss of generality, x0 = 0 andN ≥ 4N0. We
perform the following rescaling procedure. For λ ∈ (0, 1], we define the rescaled
solutions

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t). (4.15)

Let u0,λ = uλ(·, 0). Then

‖u0,λ‖Lm(B+
3/λ

) ≤ λ1− 3
mN. (4.16)

When

λ =

(
N0

N

) 1

1− 3
m
, (4.17)

the quantity on the right-hand side of (4.16) is equal to N0. The rescaling also
disrupts the local energy norm. That is, we have

‖u0,λ‖L2
uloc(R3

+) ≤ λ−
3
2M =: M ′. (4.18)

Next, we cover B+
2/λ with balls B1(x1) and B+

1 (x1) such that x1 ∈ B+
2/λ. This re-

quires O(λ−3) balls, each with O(1) intersections. In the balls B3(x1) and B+
3 (x1),

which are contained in B+
3/λ since 1/λ ≥ 4, we apply the small-data smoothing

demonstrated above, which is afforded by (4.16) and (4.17). To complete the p = m
smoothing estimate, we sum

sup
t∈I

∫
Bι1(x1)

|uλ(x, t)|m dx .
∫
Bι3(x1)

|u0,λ|m dx (4.19)

over the covering of balls, where ι ∈ {int, bd} depending on x1, and I is the
time interval from the application of the small-data smoothing on each ball. For
the p = +∞ smoothing estimate, there is no need to sum. For p ∈ (m,+∞), we
interpolate between the p = m and p = +∞ smoothing estimates. Finally, un-
doing the rescaling yields the theorem, where now S = O(1)M−O(1)N−O(1) for
M ≥Muniv and N ≥ 4N0 (compare to (4.6), which is valid for N ≤ N0). �

Proof of Theorem 1.4. Without loss of generality, we may replace ζt in the state-
ment of Theorem 1.4 by ζt/(1− νζt), where 0 < ν � 1. That is, we assume

‖u‖L∞t L2
x(Ω3(x0)×(0,T )) + ‖∇u‖L2

t,x(Ω3(x0)×(0,T )) + ‖p‖
L
ζt/(1−νζt)
t Lζxx (Ω3(x0)×(0,T ))

≤M.

(4.20)
Then the proof is identical to the proof of Theorem 1.1 up to a minor adjustment,
namely, that (4.20) is used to control (u, p) rather than the local energy estimates
in Lemma 2.1. The strong solution a is controlled in the same way as before, so by
the triangle inequality, we can still obtain

‖v‖
L
ξt
t L

ξx
x (B+

2 (x0)×(0,S))
+ ‖q − [q]B+

2 (x0)‖Lζtt Lζxx (B+
2 (x0)×(0,S))

.ν S
νM2 . (4.21)

�
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5. PROOF OF CONCENTRATION

The goal of this subsection is to prove Theorem 1.5. First, it is necessary to
introduce some notation. Let O be a domain in R3. We define the following scale-
invariant quantities, which will be used throughout our work: for x ∈ O and r ∈
(0,∞),

A(u, r;O, x, t) := sup
t−r2<s<t

1

r

∫
Br(x)∩O

|u(y, s)|2dy, (5.1)

E(u, r;O, x, t) :=
1

r

t∫
t−r2

∫
Br(x)∩O

|∇u|2dy ds, (5.2)

D 3
2
(p, r;O, x, t) :=

1

r2

t∫
t−r2

∫
Br(x)∩O

|p− [p(·, s)]Br(x)∩O|
3
2dy ds, (5.3)

Dζx,ζt(p, r;O, x, t) :=
1

r( 3
2
−δ0)ζt

t∫
t−r2

( ∫
Br(x)∩O

|p− [p(·, s)]Br(x)∩O|ζxdy
) ζt
ζx
ds

(5.4)

Here, as in the rest of this paper, (ζx, ζt) is as in Section 2 and

[f ]O :=
1

|O|

∫
O

f(y)dy.

Below, we will often take (x, t) = (0, 0). In this case, we have the following lighter
notation:

A(u, r;O) := A(u, r;O, 0, 0), E(u, r;O) := E(u, r;O, 0, 0),

D 3
2
(p, r;O) := D 3

2
(p, r;O, 0, 0), Dζx,ζt(p, r;O) := Dζx,ζt(p, r;O, 0, 0).

(5.5)

The main ingredients in proving Theorem 1.5 is Theorem 1.4, combined with a
rescaling argument and the following key proposition (which we now state).

Proposition 5.1. Let (u, p) be a suitable weak solution of (NS) on Q+
4 , in the sense

of Definition 2.2, satisfying

‖∇u‖L2
t,x(Q+

4 ) + ‖p‖
L

3
2
t,x(Q+

4 )
≤M0 (5.6)

and
sup

(y0,s0)∈Q+
3

sup
0<r≤1

A(u, r;B+
4 , y0, s0) ≤ A0. (5.7)

Then the above assumptions imply that

sup
(y0,s0)∈Q+

sup
0<r≤1

{
E(u, r;B+

4 , y0, s0) +Dζx,ζt(p, r;B
+
4 , y0, s0)

}
≤M(M0, A0).

(5.8)



28 D. ALBRITTON, T. BARKER, AND C. PRANGE

The first part of this section focuses on proving Proposition 5.1. In doing so, we
will need the following proposition, which is a rescaled version of results taken
from [Ser10].

Proposition 5.2 (Maximal pressure regularity). Let m,n and s be such that 1 <
m <∞, 1 < n ≤ ∞ andm ≤ s <∞. Suppose∇u ∈ Lnt Lmx (Q+

r ), p ∈ Lnt Lmx (Q+
r )

and f ∈ Lnt Lsx(Q+
r ). In addition, suppose that

∂tu−∆u+∇p = f, div u = 0 in Q+
r , (5.9)

and suppose u satisfies the boundary condition

u = 0 on x3 = 0. (5.10)

Then, we conclude that∇p ∈ Lnt Lsx(Q+
r/2). Furthermore, the estimate

‖∇p‖Lnt Lsx(Q+
r/2

) ≤ c(s, n,m)
(
‖f‖Lnt Lsx(Q+

r ) + r
3
s
− 3
m
−2‖u‖Lnt Lmx (Q+

r )

+ r
3
s
− 3
m
−1(‖∇u‖Lnt Lmx (Q+

r ) + ‖p− [p]B+
r
‖Lnt Lmx (Q+

r ))
) (5.11)

holds.

Another key step in proving Proposition 5.1 is establishing the following simpli-
fied versions for balls centered at the space-time point (0, 0), which we now state
as two separate propositions.

Proposition 5.3. Let (u, p) be a suitable weak solution of (NS) on Q+, in the sense
of Definition 2.2, satisfying

(u, p) ∈ L∞t L2
x ∩ L2

t Ḣ
1
x(Q+)× L

3
2 (Q+). (5.12)

Suppose that u satisfies
sup

0<r≤1
A(u, r;B+) ≤ A0. (5.13)

Then the above assumptions imply that

sup
0<r≤1

{
E(u, r;B+) +D 3

2
(p, r;B+) + r−

3
2

+δ0‖∇p‖
L
ζt
t L

3ζx
3+ζx
x (Q+

r )

}
≤ F (A0, D 3

2
(p, 1;B+), E(u, 1;B+)),

(5.14)

for a function F increasing in its (three) arguments.

Proof of Proposition 5.3. First, by Lemma 3.2 of [Mik09], we see that the assump-
tions (5.12)-(5.13) imply that

sup
0<r≤1

{
E(u, r;B+) +D 3

2
(p, r;B+)

}
≤ F (1)(A0, D 3

2
(p, 1;B+), E(u, 1;B+)).

(5.15)
Using that u(·, t) vanishes on ∂B+ ∩ ∂R3

+, we can apply Hölder’s inequality and
Poincaré’s inequality to infer that

‖u · ∇u‖
L

4
3
t L

6
5
x (Q+

r )
≤ C‖u‖

1
2

L∞t L
2
x(Q+

r )
‖∇u‖

3
2

L2(Q+
r )
. (5.16)
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We use this to now apply Proposition 5.2 with n = 4
3
, s = m = 6

5
. This and Hölder’s

inequality allow us to infer that for 0 < r ≤ 1,

r−1‖∇p‖
L

4
3
t L

6
5
x (Q+

r/2
)
≤ C(r−

1
2‖u‖L∞t L2

x(Q+
r ))

1
2 (r−

1
2‖∇u‖L2(Q+

r ))
3
2

+ Cr−
1
2 (‖∇u‖L2(Q+

r ) + ‖u‖L∞t L2
x(Q+

r ))

+ Cr−
4
3‖p− (p)B+(r)‖

L
3
2
x,t(Q

+
r )
.

(5.17)

Since ζx < 2 and ζt < 4/3, Hölder’s inequality gives

r−
3
2

+δ0‖∇p‖
LζtL

3ζx
3+ζx (Q+

r/2
)
≤ Cr−1‖∇p‖

L
4
3
t L

6
5
x (Q+

r/2
)
. (5.18)

Here, C can be taken to be independent of ζx and ζt.
Now combining (5.13) with (5.15), (5.17) and (5.18) readily gives the desired

conclusion (5.14). �

To prove Proposition 5.1, we also require the following interior analogue of
Proposition 5.3.

Proposition 5.4. Let (u, p) be a suitable weak solution of (NS) on Q, in the sense
of Definition 2.2, satisfying

(u, p) ∈ L∞t L2
x ∩ L2

t Ḣ
1
x(Q)× L

3
2 (Q). (5.19)

Suppose that u satisfies

sup
0<r≤1

A(u, r;B) ≤ A0. (5.20)

Then the above assumptions imply that

sup
0<r≤1

{
E(u, r;B) +D 3

2
(p, r;B) + r−

3
2

+δ0‖∇p‖
L
ζt
t L

3ζx
3+ζx
x (Qr)

}
≤ F (A0, D 3

2
(p, 1;B), E(u, 1;B)).

(5.21)

The proof of Proposition 5.4 is nearly identical to that of Proposition 5.3 and
hence is omitted. We remark that to prove Proposition 5.4, one uses the interior
analogue of Mikhaylov’s result [Mik09] proven by Seregin [Ser06].

Proof of Proposition 5.1. First, we note that by Poincaré’s inequality it suffices to
show that

sup
(y0,s0)∈Q+

sup
0<r≤1

{
E(u, r;B+

4 , y0, s0)

+ r−
3
2

+δ0‖∇p‖
L
ζt
t L

3ζx
3+ζx
x (Ωr(x0)×(s0−r2,s0))

}
≤ M̄(M0, A0).

(5.22)

Now, we fix (x0, t0) ∈ B+ × (−1, 0) and 0 < r ≤ 1. We divide into the various
cases that arise.
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1. Boundary case: d(x0) = 0. In this case, we can directly apply a translated
version of Proposition 5.3. This gives

E(u, r;B+
4 , x0, t0) +D 3

2
(p, r;B+

4 , x0, t0)

+ r−
3
2

+δ0‖∇p‖
L
ζt
t L

3ζx
3+ζx
x (Ωr(x0)×(t0−r2,t0))

≤ F (A0, D 3
2
(p, 1;B+

4 , x0, t0), E(u, 1;B+
4 , x0, t0)).

(5.23)

This estimate is of the form (5.22).
2. Balls intersecting with the boundary: r ≥ d(x0). In this case, we have

Ωr(x0) ⊂ B+
r+d(x0)(x0 − d(x0)e3) and we can then argue as in ‘1. Boundary case.’

3. Balls not intersecting with the boundary: r < d(x0). This is the most in-
volved of the three cases and involves two steps. First, we apply a translated and
rescaled version of Proposition 5.4 to obtain

E(u, r;B+
4 , x0, t0) +D 3

2
(p, r;B+

4 , x0, t0)

+ r−
3
2

+δ0‖∇p‖
L
ζt
t L

3ζx
3+ζx
x (Ωr(x0)×(t0−r2,t0))

≤ F (A0, D 3
2
(p, d(x0);B+

4 , x0, t0), E(u, d(x0);B+
4 , x0, t0)).

(5.24)

We then control D 3
2
(p, d(x0);B+

4 , x0, t0) and E(u, d(x0);B+
4 , x0, t0)) by appealing

to ‘2. Balls intersecting with the boundary.’ This gives an estimate of the form (5.22).
�

Remark 5.5. Observing the statements of Seregin’s result [Ser06] and Mikhaylov’s
result [Mik09], it is not difficult to determine the dependence of M(M0, A0) in
Proposition 5.1. In particular, M(M0, A0) can be taken to be polynomial in M0

and A0.

Proof of Theorem 1.5. First, recall M = M(M0, A0) is as in Proposition 5.1. Addi-
tionally, S(M) = S(M,N0, 3) ∈ (0, 1] and N0 are as in Theorem 1.4. Furthermore,
we define

t̄(M) := −1

9
S(M) (5.25)

and from now on we consider t ∈ [t̄(M), 0). With such choices, it is clear that

R(t) := 3×

√
−t

S(M)
∈ (
√
−t, 1) ∀t ∈ [t̄(M), 0). (5.26)

With these parameters fixed, the proof of Theorem 1.4 is by contraposition. We
assume that for any fixed t ∈ [t̄(M), 0),

‖u(·, t)‖L3(ΩR(t)(x
∗)) ≤ N0 (5.27)

and show that this implies that (x∗, 0) is not a singular point of u. Here x∗ ∈ B+.
First, note that (1.12), (1.13) and Proposition 5.1 imply that

R(t)−
1
2‖u‖L∞t L2

x∩L2
t Ḣ

1
x(ΩR(t)(x

∗)×(−R(t)2,0))

+R(t)−
3
2

+δ0‖p− [p]ΩR(t)(x
∗)‖Lζtt Lζxx (ΩR(t)(x

∗)×(−R(t)2,0))
≤M(M0, A0).

(5.28)
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Now, we define

λ :=

√
−t

S(M)
=

1

3
R(t) <

1

3
(5.29)

and the rescalings

(uλ(x, s), pλ(x, s)) := (λu(λx, λ2s+ t), λ2p(λx, λ2s+ t)) x∗λ := λx∗. (5.30)

It is clear that the point (x, s) = (x∗λ, S(M)) for (uλ, pλ) corresponds to (x∗, 0) for
the unscaled (u, p). From (5.27)-(5.28) we have

‖uλ(·, 0)‖L3(Ω3(x∗λ)) ≤ N0 (5.31)

and
‖uλ‖L∞t L2

x∩L2
t Ḣ

1
x(Ω3(x∗λ)×(0,S(M))) + ‖pλ − [pλ]Ω3(x∗λ)‖Lζtt Lζxx (Ω3(x∗λ)×(0,S(M)))

≤M.

(5.32)

We can then apply Theorem 1.4 to infer that (x∗λ, S(M)) is a regular point of uλ.
Undoing the rescaling, we see that this implies that (x∗, 0) is a regular point for u.

�
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APPENDIX A. Lm SOLUTION THEORY

Here we collect statements about the well-known perturbation theory for the
Navier-Stokes equations in the half-space, with contributions due to [McC81, Wei80,
Kat84, GM85, Gig86] and many others.

Proposition A.1 (Lm solution theory). Let u0 ∈ Lmσ (R3
+) with m ∈ [3,+∞) and

‖u0‖Lmσ (R3
+) ≤ N .

♦ (Subcritical) If m > 3, then there exists Tm = Tm(N) > 0 and a mild solution
u ∈ C([0, Tm];Lm(R3

+)) satisfying, for all p ∈ [m,+∞],

sup
t∈(0,Tm)

t
3
2( 1

m
− 1
p)‖u(·, t)‖Lp(R3

+) .m N (A.1)

sup
t∈(0,Tm)

t
3
2( 1

m
− 1
p)+ 1

2‖∇u(·, t)‖Lp(R3
+) .m N (A.2)

‖u‖
L

5m/3
t,x (R3

+×(0,Tm))
.m N. (A.3)

The mild solution is unique in the class C([0, T ];Lmσ (R3
+)).

♦ (Critical) If m = 3, then there exists T3 = T3(u0) > 0 and a mild solution u ∈
C([0, T3];L3(R3

+)) satisfying (A.1), (A.2), and (A.3). If N � 1, then T3 = +∞.
The mild solution is unique in the class u ∈ L5

t,x(R3
+ × (0, T3)).
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♦ If u0 ∈ Lm1
σ (R3

+) ∩ Lm2
σ (R3

+) with m1,m2 ∈ [3,+∞), then the mild solutions
guaranteed by the above points are identical.

♦ (Weak-strong uniqueness) If also u0 ∈ L2
σ(R3

+), then all weak Leray-Hopf solu-
tions are identical to the above mild solution on its existence time.

The mild formulation of the Navier-Stokes equation is, formally,

u(·, t) = etAu0 −
∫ t

0

e(t−s)AP div(u⊗ u)(·, s) ds

= etAu0 −
∫ t

0

e(t−s)AP(u · ∇u)(·, s) ds.
(A.4)

We summarize below only the linear theory necessary to prove Proposition A.1. To
do so, one may follow [Tsa18, Chapter 5].

Summary of linear theory. For all m ∈ (1,+∞), the Stokes operator

A = P∆ : (W 2,m ∩W 1,m
0 ∩ Lmσ )(R3

+) ⊂ Lmσ (R3
+)→ Lmσ (R3

+) (A.5)

generates an analytic semigroup t 7→ S(t) inLm(R3
+), t ≥ 0. In particular, S(t)u0 ∈

D(Ak) for all k ≥ 0 and t > 0, and the following estimates are satisfied:

tk‖AkS(t)u0‖Lmσ (R3
+) .m ‖u0‖Lmσ (R3

+). (A.6)

By elliptic regularity for the steady Stokes equations, we have that

tk‖∇2k
x S(t)u0‖Lm(R3

+) .m ‖u0‖Lmσ (R3
+) (A.7)

for all k ≥ 0. Upon interpolating, we have

t
1
2‖∇xS(t)u0‖Lp(R3

+) + ‖S(t)u0‖Lpσ(R3
+) .m t

1
2

( 3
p
− 3
m

)‖u0‖Lmσ (R3
+) (A.8)

for all p ∈ [m,+∞]. In particular, (A.8) estimates ∇xS(t)P : Lm(R3
+;R3) →

Lm(R3
+;R3×3). By duality, we have

t
1
2‖S(t)P divF‖Lm(R3

+;R3) .m ‖F‖Lm(R3
+;R3×3) (A.9)

for all m ∈ (1,+∞). Alternatively, one may argue by means of the operator A1/2.
By combining (A.9) with (A.8), we have

t
1
2‖S(t)P divF‖Lp(R3

+;R3) .m t
1
2

( 3
p
− 3
m

)‖F‖Lm(R3
+;R3×3). (A.10)

for all p ∈ [m,+∞]. This completes the proof of the time-weighted estimates.
We now argue the space-time Lebesgue estimates

‖S(t)u0‖L5m/3
t,x (R3

+×R+)
.m ‖u0‖Lmσ (R3

+) , (A.11)

for m ∈ (1,+∞), and∥∥∥∥∫ t

0

S(t− s)P divF (·, s) ds
∥∥∥∥
L

5m/3
t,x (R3

+×(0,T );R3)

.m T
1
2

(1− 3
m

)‖F‖
L

5m/6
t,x (R3

+×(0,T );R3×3)
,

(A.12)

form ∈ [3,+∞). We follow [Gig86]. To see (A.11), consider the sublinear operator

u0 7→
(
t 7→ ‖S(t)Pu0‖L5m/3

x

)
: Lm(R3

+;R3)→ L5m/3,∞(0,+∞), (A.13)



LOCALIZED SMOOTHING AND CONCENTRATION IN THE HALF SPACE 33

where the mapping property is due to (A.8). By the Marcinkiewicz interpolation
theorem, we may interpolate between different values of m to obtain (A.11).17 Fi-
nally, (A.12) can be obtained using (A.10) and the Hardy-Littlewood-Sobolev in-
equality (alternatively, Young’s convolution inequality in Lorentz spaces). �
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