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Abstract

This article addresses the low Weissenberg asymptotic analysis (Newtonian limit)
of some macroscopic models of viscoelastic fluid flows in the framework of global
weak solutions. We investigate the convergence of the corotational Johnson-Segalman,
the FENE-P, the Giesekus and PTT models. Relying on a priori bounds coming
from energy or free energy estimates, we first study the weak convergence toward the
Navier-Stokes system. We then turn to the main focus of our paper, i.e. the strong
convergence. The novelty of our work is to address these issues by relative entropy
estimates, which require the introduction of some corrector terms. We also take into
account the presence of defect measures in the initial data, uniform with respect to
the Weissenberg number, and prove that they do not perturb the Newtonian limit of
the corotational system.

1 Introduction

This work is concerned with viscoelastic fluid flows, which have an elastic behaviour in short
times, and a viscous one in large times. Such non-Newtonian fluids are ubiquitous: glaciers,
Earth’s mantle, dough, paint, solutions of polymers. They have a complex dynamic. For
instance, phenomena such as the rod climbing effect, the tubeless siphon effect and die
swell can be observed in polymeric liquids. In order to get an insight into the physics of
viscoelastic fluid flows, the reader is refered to [Ren00, LBL09, Ött05, Osw05].

Because of elasticity, viscoelastic fluids remember their history, which means that the
dynamic of the flow at a given time depends on the past. This is in strong constrast with
Newtonian fluids (i.e. purely viscous fluids). The viscoelastic relaxation time is roughly the
time on which the flow remembers the past. The dimensionless number, which compares
the viscoelastic relaxation time to a time scale relevant to the fluid flow, is the Weissenberg
(or Deborah number) We. The bigger We, the more important is the elasticity with respect
to the viscosity.

The purpose of our paper is to face a problem raised by J.-C. Saut in his recent re-
view article [Sau12]: the mathematical study of the Newtonian limit of models from non-
Newtonian fluid mechanics, that is to say the limit We→ 0. We focus on some macroscopic
models of polymeric viscoelastic fluid flows. The works presented here are a first step to-
ward a better understanding of the effect of a small amount of elasticity on the Newtonian
dynamic of a fluid with weak regularity.
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1.1 Macroscopic models of viscoelastic fluid flows

All macro-macro models we consider here are the coupling of a momentum equation on
the incompressible velocity u = u(t, x) ∈ Rd and an equation for the symmetric stress
tensor τ = τ(t, x) ∈Md (R) (or a symmetric structure tensor A = A(t, x) ∈Md (R), which
has a microscopic meaning). In the sequel, we concentrate on two models: namely the
corotational Johnson-Segalman model

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,
∇ · u = 0,

We (∂tτ + u · ∇τ + τW (u)−W (u)τ) + τ = 2ωD(u),
(1.1)

and the FENE-P model

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,
∇ · u = 0,

τ = (b+d)ω
b

1
We

(
A

1−TrA
b

− I

)
,

∂tA+ u · ∇A−∇uA−A (∇u)T + 1
We

A
1−TrA

b

= 1
We I .

(1.2)

Notice that these systems are posed in Ω ⊂ Rd a bounded domain, Ω = Rd or Ω = Td. We
recall that D(u) := ∇u+(∇u)T

2 is the deformation tensor and that W (u) := ∇u−(∇u)T

2 is the
vorticity tensor. The quantity ∂tτ +u ·∇τ + τW (u)−W (u)τ (resp. ∂tA+u ·∇A−∇uA−
A (∇u)T ) is known as the corotational (resp. upper convected) derivative of τ (resp. A).

In addition, we assume that u satisfies a noslip boundary condition on ∂Ω. There is
no condition for τ (nor A) on the boundary. We start from the initial conditions:

u(0, ·) := u0, τ(0, ·) := τ0, A(0, ·) := A0.

We consider only the case of Jeffrey fluids, for which 0 < ω < 1, in the framework of global
in time weak solutions. The case ω = 1 turns out to be much more complicated (like Euler
in comparison to Navier-Stokes).

Corotational model A simple a priori energy estimate on (1.1) leads to

ω ‖u(t, ·)‖2L2(Ω) + 2ω(1− ω)

ˆ t

0
‖∇u‖2L2(Ω) +

We

2
‖τ(t, ·)‖2L2(Ω) +

ˆ t

0
‖τ‖2L2(Ω)

≤ ω ‖u0‖2L2(Ω) +
We

2
‖τ0‖2L2(Ω) . (1.3)

This decay of energy is a consequence of the algebraic identity

(τW (u)−W (u)τ) : τ = 0.

Although it is convenient from a mathematical viewpoint and greatly simplifies the analysis
of the system, (1.3) points out some drawbacks of the corotational model. Indeed, as
underlined in [WH98], this decay of energy is not relevant from a physical viewpoint.
Furthermore, as noticed in [Ren00, Chapter 3], the corotational model is unable to predict
some behaviours, such as the rod climbing effect.

The existence of weak solutions to the corotational model (1.1) for d = 2 or 3 is due to
P.-L. Lions and N. Masmoudi [LM00]. The starting point of their analysis is the inequality
(1.3). They intensively rely on the use of defect measures to pass to the limit in the
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product τnW (un), where (un, τn) is an approximated smooth solution to (1.1). Note that
the regularity provided by (1.3) is barely τ ∈ L∞

(
(0,∞);L2

)
and ∇u ∈ L2

(
(0,∞);L2

)
.

The key of the proof is the control of τ in L∞ ((0, T );Lq) for a q > 2 and 0 < T <∞.
The initial velocity field is taken in the space Ip,q ⊂W−1,q: for all 1 < p, q <∞

Ip,q :=

{
u0 ∈W−1,q;

∥∥∥A− 1
2

q u0

∥∥∥
Lq

+

(ˆ ∞
0

∥∥∥Aqe−tAqA
− 1

2
q u0

∥∥∥
Lq
dt

) 1
p

<∞

}
, (1.4)

where Aq := Pq∆ is the Stokes operator with domain

D(Aq) :=
{
u ∈ Lq,σ; ∇2u ∈ Lq, u|∂Ω = 0

}
,

Pq being the Helmholtz projector on Lq,σ with domain Lq. The space Lq,σ is the closure
of the space {v ∈ C∞0 (Ω) : ∇ · v = 0} in Lq. For more properties about the space Ip,q and
the Stokes operator, we refer to [GS91].

In more details, their existence result reads:

Result A (P.-L. Lions, N. Masmoudi). There exists a global weak solution (u, τ) of (1.1)
satisfying the energy inequality (1.3) such that for all 0 < T <∞,

∇u ∈ Lp ((0, T );Lq) and τ ∈ C0 ([0,∞);Lq) ,

provided that τ0 ∈ Lq and u0 ∈ Ip,q,

• for some 2 < q < +∞, 1 < p < +∞, if d = 2,

• and for some 2 < q ≤ 3, 1 < p ≤ q
2q−3 , if d = 3.

FENE-P model This model is one of the many closure approximations of the micro-
scopic FENE (Finite Extensible Nonlinear Elastic) dumbbel model (see [DLY05a, DLY05b]).
Its low computational costs, compared to micro-macro models, and its acceptable predic-
tions make it a widely used model for numerical simulation of viscoelastic fluid flows.
However, as pointed out in [Keu97], it does not capture all the physics of the microscopic
model. Note that the parameter b in (1.2) relates to the extensibility of the elastic dumbbels
at the microscopic scale.

The energy is replaced by a non-trivial free energy (or entropy), which has been known
from physicists since the work of L. E. Wedgewood and R. B. Bird [WB88] (see also
[WH98, Ött05]). D. Hu and T. Lelièvre in [HL07] have recently rediscovered this entropy
and showed that it decays in time:

1

2
‖u(t, ·)‖2L2(Ω) + (1− ω)

ˆ t

0
‖∇u‖2L2(Ω)

+
ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA)− b ln

(
1− Tr(A)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
‖u0‖2L2(Ω) +

ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA0)− b ln

(
1− Tr(A0)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(1.5)

Based on this decay, N. Masmoudi [Mas11] has achieved an existence result for the system
(1.2). The fundamental point is that the decay of the entropy (1.5) yields a control of the
L2 ((0,∞)× Ω) norm of τ .
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Result B (N. Masmoudi). Let d ≥ 2. Assume that u0 ∈ L2 is a divergence free vector
field and that A0 = A0(x) is a symmetric positive definite matrix with TrA0 < b and such
that ˆ

Ω

[
− ln (detA0)− b ln

(
1− TrA0

b

)
+ (b+ d) ln

(
b

b+ d

)]
<∞.

Then, there exists a global weak solution (u,A, τ) to (1.2) satisfying (1.5), such that

u ∈ L∞
(
(0,∞);L2

)
∩ L∞

(
(0,∞); Ḣ1

)
, A ∈ L∞ ((0,∞)× Ω) and τ ∈ L2 ((0,∞)× Ω) .

1.2 Outline of our results

The existence theorems of global weak solutions open the way to the asymptotic analysis
at low Weissenberg number. From a formal perspective, it is easy to see that the velocity
field u of the non-Newtonian fluid model (1.1) converges toward a solution u0 of the Navier-
Stokes system 

∂tu
0 + u0 · ∇u0 −∆u0 +∇p0 = 0, Ω,

∇ · u0 = 0, Ω,
u0 = 0, ∂Ω.

(1.6)

Notice that the noslip condition is compatible with the limit, so that no boundary layers
are involved in this limit (at least at the leading order in We). That is why, we state our
results for the whole space domain Ω = Rd.

As far as we know, the Newtonian limit of non-Newtonian fluids has only been studied
in the context of strong solutions. First results in the direction of a better understanding of
this limit have been reached by J.-C. Saut in [Sau86] for Maxwell type flows (no diffusion
term in the momentum equation) in the linear regime. The only other result we are aware of
is the one of L. Molinet and R. Talhouk [MT08] for strong solutions of Johnson-Segalman
systems (including the corotational and the Oldroyd-B systems). For these models no
energy of the type of (1.3) is available in general, so they rely on a splitting in low and
high frequencies at a cut-off frequency depending on We.

The originality of our work is to address the Newtonian limit in the framework of weak
solutions relying only on energy (or free energy) methods. Thus our results do not ask for
more smoothness than the natural regularity available.

The first logical step in our study of the limit is to investigate the weak convergence. For
the corotational and the FENE-P models, we easily obtain the weak convergence toward the
Navier-Stokes system. More intricate calculations of relative entropies involving higher-
order corrector terms make it then possible to achieve strong convergence results. The
latter are the main focus of our paper.

1.2.1 Newtonian limit: weak convergence

The mathematical justification of the formal asymptotics requires a priori bounds uniform
in We. Some bounds, like the L∞

(
(0,∞);L2

)
bound on τ for (1.1), are not uniform in

We. They were usefull for the Cauchy theory, but are useless for the Newtonian limit.
Notice that the initial data u0, A0 and τ0 may depend on We. In order to get uniform

bounds in We, we have to assume that initial data is well-prepared, in a sense to be made
precise later on. We always start from data meeting the conditions of Result A or B leading
to the existence of weak solutions. We state the weak convergence results for a bounded
domain Ω; the results being the same for the whole space or periodic boundary conditions.

Our first result is concerned with the weak convergence in the corotational system.
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Proposition 1. Let d = 2, 3. Let (u, τ) be a weak solution of (1.1) in the sense of Result
A. Assume that

‖u0‖2L2(Ω) +
We

2
‖τ0‖2L2(Ω) = O(1). (1.7)

Then, there exist

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
such that u (resp. τ) converges to u0 (resp. τ0) at least in the sense of distribution, where
u0 is a weak solution of the Navier-Stokes system (1.6) and τ0 = 2ωD

(
u0
)
.

We turn to the weak convergence for the FENE-P model. It is formally clear that A
converges toA0 := b

b+d I. The key to the convergence of u is a bound on τ in L2 ((0,∞)× Ω)
uniform in We, deduced from the decay of the free energy (1.5).

Proposition 2. Let d = 2, 3. We consider a global weak solution (u,A, τ) of (1.2) in the
sense of Result B. Assume that ‖u0‖L2(Ω) = O(1). Then we get several convergence results
in the limit We→ 0.
• Assume that initial data is ill-prepared in the sense that

ˆ
Ω

[
− ln (detA0)− b ln

(
1− TrA0

b

)
+ (b+ d) ln

(
b

b+ d

)]
= O (1) .

Then A tends to A0 in L2
(
(0,∞);L2 (Ω)

)
and∥∥A−A0

∥∥
L2((0,∞);L2(Ω))

= O
(√

We
)
. (1.8)

• Assume furthermore that initial data is well-prepared namely
ˆ

Ω

[
− ln (detA0)− b ln

(
1− TrA0

b

)
+ (b+ d) ln

(
b

b+ d

)]
= O (We) . (1.9)

Then we have the following improved convergences:∥∥A−A0
∥∥
L∞((0,∞);L2(Ω))

= O
(√

We
)
, (1.10a)∥∥A−A0

∥∥
L2((0,∞);L2(Ω))

= O (We) . (1.10b)

Moreover, τ is bounded uniformly in L2 ((0,∞)× Ω), and u (resp. τ) converges in the
sense of distributions toward u0 (resp. 2ωD(u0)), where u0 satisfies the Navier-Stokes
system (1.6).

Before coming to the strong convergence, let us state a slight generalization of Propo-
sition 1 allowing to handle the case of oscillating initial data (u0,n, τ0,n). For the sake
of easiness, we temporarily consider initial data independent of We and treat only the
case d = 2. We assume that u0,n strongly converges in L2(Ω) toward u0, and that τ0,n

is uniformly equiintegrable in L2(Ω). In particular, we do not assume that τ0,n converges
strongly in L2(Ω). We then call (un, τn) the associated weak solution of (1.1), which satis-
fies the energy inequality (1.3). We show that passing to the limit on n introduces defect
measures in the limit system. These defect measures are due to the oscillations of the
initial data τ0,n. We prove that they disappear in the limit We→ 0.
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Proposition 1 bis. Let d = 2 and Ω = R2. The result is in two points:
• Limit n→∞. There exists

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
, and τ ∈ L∞

(
(0,∞);L2

)
,

such that (un, τn) tends to (u, τ) at least in the sense of distributions and (u, τ) satisfies
the system

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ
∇ · u = 0

We

[
∂tτ + u · ∇τ + τW (u)−W (u) τ +

(
−ε 1

2δ
−1

2δ ε

)]
+ τ = 2ωD (u)

(1.11)

with defect measures δ, ε ∈ L1
loc

(
(0,∞);L1

)
.

• Limit We→ 0. There exists

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

solving the Navier-Stokes system (1.6) in the sense of distributions and such that (u, τ)
converges weakly toward

(
u0, τ0

)
.

This result is quite distant from the main focus of our paper. It is a natural continuation
of some techniques involved in the article [LM00]. We therefore postpone its proof to the
Appendix A. The main difficulty is to get uniform in We a priori estimates on the defect
measures δ and ε, so as to pass to the limit in (1.11).

1.2.2 Newtonian limit: strong convergence

Our strong convergence results always follow from the same two steps: first we build an
ansatz for u, A and τ , and then we compare this approximation to u, A and τ in an ap-
propriate norm derived from the energy, or the free energy associated to the system. This
is the leitmotiv of relative entropy (or modulated energy) methods. Since the pioneering
works of C. Dafermos [Daf79a, Daf79b], of R. Di Perna [DiP79] and of H.-T. Yau [Yau91],
relative entropy methods have become a crucial and widely used tool in the study of asymp-
totic limits to kinetic models in the contex of hydrodynamics [LM01, GSR04, BV05], of the
quasineutral limit for the Vlasov-Poisson system [Bre00, HK11], of the behavior of shocks
for systems of conservation laws [LV11] and of the stability in thermomechanical theories
[LT06, DST12]. They have also been successfully implemented in the approximation of
incompressible fluids by hyperbolic systems [BNP04, NR06]; see also [Tza05, LT13] for an
expository of the general method, which is close to ours, and the use of corrector terms.
Let us also mention the use of relative entropies for the study of the long-time behavior
of some micro-macro models for dilute solutions of polymers, and the convergence to equi-
librium by B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto [JLBLO06]. Relative entropy
methods are also the key to the estimates of F. Otto and A. Tzavaras in [OT08].

The very rough idea is work with an energy (resp. free energy) e = e(u,A, τ) like the
one in the left hand side of (1.3) (resp. (1.5)). Notice that e(u,A, τ) = e1(u)+e2(A)+e3(τ).
The decisive point, is that the functions ei, for i = 1, . . . 3 are globally convex. Thus, one
can make a Taylor expansion of e around say

(
ũ, Ã, τ̃

)
, and get that the quantity

E(u,A, τ) := e(u,A, τ)− e
(
ũ, Ã, τ̃

)
−∇e1

(
ũ
)
·
(
u− ũ

)
−∇e2

(
Ã
)
·
(
A− Ã

)
−∇e3

(
τ̃
)
·
(
τ − τ̃

)
is positive and controls the norm of

|u− ũ|2 + α
∣∣A− Ã∣∣2 + β |τ − τ̃ |2 ,
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with α, β ≥ 0, α = 0 (resp. β = 0) for the corotational (resp. for the FENE-P) model.
The quantity E is called the relative entropy (or modulated energy). Its control is based
on an explicit computation of its total time derivative in order to establish a Gronwall type
inequality. These computations may be quite tricky (especially in the case of the FENE-P
system), as they involve the algebraic structure of the equations (1.1) or (1.2).

This procedure yields an error estimate between u (resp. A, τ) and its approximation.
The convergence result holds for solutions of (1.1) or (1.2) with very low regularity, typically
weak solutions. However, in order to carry out the estimates of the relative entropies, we
need quite a lot regularity on the profiles of our ansatz.

The first of our two theorems below handles the case of the corotational system.

Theorem 3. Let d = 2, 3, u0 ∈ H4,σ (Ω) independent of We and τ0 ∈ L2 (Ω)∩Lq (Ω), with
2 < q ≤ 3. Notice that τ0 may depend on We in the following sense:

∥∥τ0

∥∥
L2(Ω)

= O(1).
Let also

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
, and τ ∈ L∞

(
(0,∞);L2

)
∩ L∞loc ((0,∞);Lq)

be global weak solutions to (1.1) in the sense of Result A associated to the initial data u0

and τ0.
Then, there exists 0 < T ∗ <∞ independent of We and

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
a global weak solution of (1.6) associated to the initial data u0, such that, in addition, u0

belongs to L∞
(
(0, T );H4

)
for all 0 < T < T ∗. Moreover, for all 0 < T < T ∗,

sup
0<t<T

(
ω
∥∥u(t, ·)− u0(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2

+
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2

) 1
2

= O
(√

We
)
. (1.12)

Let us comment on this theorem:

• The proof is done in the case when Ω = R3. It is not hard to adapt our arguments to
the easier case Ω = R2. Furthermore, as no boundary condition is prescribed on τ ,
and as u0 = 0 can be imposed on the boundary for the limit velocity field, there is no
boundary layer in the limit We → 0. Thus, our analysis extends straightforwardly
to the case when Ω is a bounded domain.

• We assume that u0 does not depend on We only in order to alleviate the proof.
Of course, one can start from an initial data for u depending on We and get the
convergence (1.12) on condition that one assumes∥∥u(0, ·)− u0(0, ·)

∥∥
L2(Ω)

= O
(√

We
)
.

• Our result does not require further regularity for (u, τ) than the natural regularity
yielded by (1.3). However, it is quite demanding on the limit profile u0. It might
be possible to weaken the regularity requirements on the initial velocity field. In
particular, we do not take advantage of the regularizing effect of the Navier-Stokes
equation, which yields u0 ∈ L2

(
(0, T );H5

)
, because we need the L∞ bound in time.
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• The regularity needed on u0 in order to carry out the computations of the proof is
the reason why the convergence result only holds as long as u0 remains sufficiently
regular.

• Note that nothing is prescribed on the initial stress tensor τ0, except the requirements
to get a global weak solution to (1.1). In other words, Theorem 3 is a convergence
result for ill-prepared data τ0.

• Our theorem complements the study of L. Molinet and R. Talhouk [MT08]. They
manage to get a convergence result of strong solutions for ill-prepared data, in the case
when the equation on τ has the additional term a (D(u)τ + τD(u)), with −1 ≤ a ≤ 1.
Our system (1.1) corresponds to a = 0. In the general case, a 6= 0, there is no known
energy associated to the system. Hence their proof, unlike ours, relies on a cutting
up of u and τ in low and high frequencies.

• This convergence result can be used, in the two-dimensional case, to prove the exis-
tence of global in time strong solutions to (1.1) for We small enough. Of course, we
would rely on the global existence of strong solutions to the Navier-Stokes system
when d = 2.

The proof of Theorem 3 serves as a guideline for the main result of our paper, which
is concerned with the strong convergence of the FENE-P system:

Theorem 4. Let d = 2, 3. Assume that u0 ∈ H4,σ (Ω) is independent of We, that
A0 ∈ L2 (Ω) is symmetric positive definite and TrA0 < b. Assume furthermore that the
initial data is well-prepared in the sense that

ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA0)− b ln

(
1− TrA0

b

)
+ (b+ d) ln

(
b

b+ d

)]
= O (We) . (1.13)

Let

u ∈ L∞
(
(0,∞);L2

)
∩ L2

(
(0,∞); Ḣ1

)
, A ∈ L∞ ((0,∞)× Ω) , τ ∈ L2 ((0,∞)× Ω)

be the solution of (1.2) in the sense of Result B associated to the initial data u0 and A0.
Then, there exists 0 < T ∗ < ∞ independent of We, u0 a global weak solution of (1.6)
associated to the initial data u0 and a corrector A1, such that, in addition, u0 belongs to
L∞

(
(0, T );H4

)
and A1 ∈ L∞

(
(0, T );H3

)
for all 0 < T < T ∗.

Furthermore, u and A converge in the modulated energy norm

sup
t∈[0,T ]

(
1

2

∥∥u− u0
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2

+
ω(b+ d)

2b

1

We

∥∥A−A0 −WeA1
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2

) 1
2

= O
(√

We
)
,

(1.14)

on every time interval [0, T ], with 0 < T < T ∗.
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Notice that the estimate (1.14) implies immediately the following strong convergences:∥∥u− u0
∥∥
L∞((0,T );L2)

= O
(√

We
)
,∥∥u− u0

∥∥
L2((0,T );H1)

= O
(√

We
)
,∥∥A−A0

∥∥
L∞((0,T );L2)

= O (We) ,∥∥A−A0 −WeA1
∥∥
L2((0,T );L2)

= O
(

We3/2
)
,∥∥τ − τ0

∥∥
L1((0,T );L1)

= O
(√

We
)
.

(1.15)

Most of the remarks made after the strong convergence Theorem 3 have their counter-
part for the FENE-P system. Let us make a few further comments:

• Notice that (1.13) imposes that∥∥A0 −A0
∥∥2

L2(Ω)
= O (We) .

However, looking at the decomposition (3.9) of τ , we note that nothing is prescribed
on the second term in the right hand side, namely

(b+ d)ω

b

1

We
A

TrA− TrA0

b
(

1− TrA0

b

) (
1− TrA

b

) ,
which means that our result holds for ill-prepared data τ , such that τ0 6= 2ωD (u0).
Hence, Theorem 4 is in the same spirit as our strong convergence result on the
corotational system, and the work of L. Molinet and R. Talhouk [MT08] on the
convergence of strong solutions to the generic Johnson-Segalman model.

• We carry out the proof in the case d = 3. The case d = 2 is even simpler. As in the
proof of Theorem 3, the restriction on the dimension comes from the estimate of the
term

−
ˆ t

0

ˆ
Ω

((
u− u0 −Weu1

)
· ∇u0

)
·
(
u− u0 −Weu1

)
.

• Note that the smoothness assumption u0 ∈ H4 is enough in the case d = 2 as well
as d = 3. It implies A1 ∈ L∞ ((0, T );Lp), for all 1 ≤ p ≤ ∞.

• The control of the norm (1.14) is obtained through a Taylor expansion of the free
energy (1.5) around the corrector A0 +WeA1. This leads to the study of the positive
quantity (3.17), called the relative entropy, which bounds the norm (1.14). Expanding
the free energy around A0 is not enough. It would yield a bound on A− A0, rather
than on A−A0 −WeA1.

After the proof of this theorem in Section 3.2, we comment on the strong convergence
for other macroscopic models of viscoelastic fluid flows, namely the Giesekus, the PTT and
Oldroyd-B models.

1.3 Organization of the paper

For the reader’s convenience we devote the first section of this paper (Section 2) to the
proof of the results concerning the corotational system. The proofs are easier in this case,
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and shed some light on some features, which help to understand our analysis of the FENE-
P system. We show the weak convergence of Proposition 1 in the Section 2.1, and the
strong convergence of Theorem 3 in Section 2.2. In Section 3 we address the results related
to the FENE-P system. Proposition 2 (weak convergence) is showed in Section 3.1 and we
demonstrate our Theorem 4 (strong convergence) in Section 3.2. At the end of this part,
we make some brief comments on the convergence for the Giesekus and PTT models. The
proof of Proposition 1 bis is postponed to the Appendix A. In this appendix, we also show
refined Lp ((0, T );Lq) a priori estimates on the corotational system. These estimates are
also the key for the existence of weak solutions to the corotational system.

2 Low Weissenberg limit for the corotational system

We concentrate on the low Weissenberg asymptotic analysis of the corotational system
(1.1). The first part of this section is devoted to the weak convergence. In the second
subsection, we show the strong convergence result of Theorem 3, relying on a relative
entropy method.

2.1 Weak convergence

We carry out the proof of Proposition 1 in the case when Ω ⊂ Rd is a bounded domain
and d = 2, 3. Our analysis extends straightforwardly to the case Ω = Td, and Ω = Rd,
as we only work with local in space bounds. Let (u, τ) be a sequence of weak solutions to
(1.1) satisfying the a priori bound (1.3). According to the assumption (1.7) on the initial
data, we deduce that

u is uniformly bounded in We in L∞
(
(0,∞);L2

)
∩ L2

(
(0,∞); Ḣ1

)
,

τ u.b. in We in L2
(
(0,∞);L2

)
.

Let us notice that the bound on τ in L∞
(
(0,∞);L2

)
is not uniform in We.

Compactness As is usual, the former bounds imply the existence of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

such that the following convergences hold (extracting subsequences if necessary), for all
0 < T <∞,

u ⇀ u0 L2
(
(0, T );H1

)
, (2.1a)

u(t, ·) ⇀ u0(t, ·) L2(Ω), (2.1b)

u
∗
⇀ u0 L∞

(
(0,∞);L2

)
, (2.1c)

∇u ⇀ ∇u0 L2
(
(0,∞);L2

)
, (2.1d)

τ ⇀ τ0 L2
(
(0,∞);L2

)
, (2.1e)

τ(t, ·) ⇀ τ0(t, ·) L2(Ω), (2.1f)

and
∂tu is uniformly bounded in L4/d

(
(0, T );V ′

)
,

where V ′ is the dual of V := {v ∈ H1
0 , ∇ · v = 0}. For the latter bound we note that ∇ · τ

is bounded in L2
(
(0, T );H−1

)
. The non-linear term is the only tricky one to estimate: for

all ϕσ ∈ C∞c ((0,∞);C∞,σc ), for all 0 < t < T ,∣∣∣〈−u · ∇u(t, ·), ϕσ(t, ·)〉D′,D
∣∣∣ ≤ ‖u(t, ·)‖2−d/2

L2 ‖u(t, ·)‖d/2
H1 ‖ϕσ(t, ·)‖V .
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Therefore, using the Aubin-Lions lemma [CF88], we get the strong convergence

u −→ u0 L2
(
(0, T );L2

)
. (2.1g)

Weak convergence of τ and u The simple observation leading to the convergence of
τ is that

2ωD(u)− τ = We (∂tτ + u · ∇τ + τW (u)−W (u)τ) .

The Weissenberg number in front of the right hand side makes the convergence follow
directly from the bounds on u and τ above. The Newtonian limit is therefore much more
simple than passing to the limit on a sequence of approximated solutions, when proving
the existence of weak solutions. We do not need refined convergence results for τ . For all
ψ ∈ C∞c ((0,∞)× Ω),

〈2ωD (u)− τ, ψ〉D′,D
= 〈∂tτ + u · ∇τ + τW (u)−W (u) τ, ψ〉D′,D
= We

[
−〈τ, ∂tψ + u · ∇ψ〉L2,L2 + 〈τW (u)−W (u) τ, ψ〉D′,D

]
We→0−→ 0.

Moreover,
〈2ωD (u)− τ, ψ〉D′,D

We→0−→
〈
2ωD

(
u0
)
− τ0, ψ

〉
D′,D ,

which yields at the limit, τ0 = 2ωD
(
u0
)
.

Let ϕσ ∈ C∞c ((0,∞);C∞,σc ). The strong convergence of the velocity field in L2
(
(0, T );L2

)
allows to pass to the weak limit in the nonlinear term u · ∇u. Hence, we can pass to the
limit in the momentum equation and get that u0 satisfies〈

∂tu
0 + u0 · ∇u0 − (1− ω)∆u0, ϕσ

〉
D′,D =

〈
τ0, ϕσ

〉
D′,D = ω

〈
∆u0, ϕσ

〉
D′,D .

It remains to apply De Rham’s theorem (see for example [Sim03] for a rigorous statement)
to ensure that u0 is a weak solution to the Navier-Stokes system (1.6).

Remark 5. We can pass to the limit in the inequality (1.3) assuming furthermore that√
We τ0 tends to zero in L2. Then using that τ0 = 2ωD(u0) and the obtained weak conver-

gences, we get the standard energy inequality related to the Navier-Stokes equations.

2.2 Strong convergence

Our goal is to give a proof of Theorem 3 stating the strong convergence of the velocity
field u and of the symmetric stress tensor τ of the fluid flow solving (1.1). Our modus
operandi emphasizes in a simple case some features of the relative entropy method used
for the strong convergence in the FENE-P system.

To get the strong convergence, we expand u, p and τ in powers of We:

u ' u0 + Weu1, p ' p0 + We p1, τ ' τ0 + We τ1.

Very formal computations yield, as expected, that the lower order term u0 = u0(t, x) ∈ R3

should solve the three-dimensional Navier-Stokes equation{
∂tu

0 + u0 · ∇u0 −∆u0 +∇p0 = 0
∇ · u0 = 0

, (2.2)

and that the stress tensor
τ0 = 2ωD(u0). (2.3)
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At first order in We, we expect u1 = u1(t, x) ∈ R3 and the symmetric tensor τ1 = τ1(t, x) ∈
R3 to solve 

∂tu
1 + u0 · ∇u1 + u1 · ∇u0 − (1− ω)∆u1 +∇p1 = ∇ · τ1

∇ · u1 = 0
∂tτ

0 + u0 · ∇τ0 + τ0W (u0)−W (u0)τ0 + τ1 = 2ωD(u1)
. (2.4)

We aim at showing, first in the case of Ω = R3 that these expansions are in fact correct,
as well for well-prepared as for ill-prepared data τ0. The idea of the proof is classical and
consists in using the relative entropy of the viscoelastic system. We proceed in two steps
for the proof: first we show the well-posedness of system (2.4), then we prove a Gronwall
type inequality on the relative entropy.

2.2.1 On the necessity of the first-order correctors

The first-order correctors u1 and τ1 are needed to achieve our estimates, although there
are transparent in the final convergence result (1.12). Indeed, if one stops the expansion
of u and τ at order 0, we get the estimate:

ω
∥∥u(t, ·)− u0(t, ·)

∥∥2

L2 + 2ω(1− ω)

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2 +
We

2
‖τ(t, ·)‖2L2

+

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥2

L2 ≤
We

2
‖τ0‖2L2 − 2ω

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇u0

)
·
(
u− u0

)
− 2ω

ˆ t

0

ˆ
R3

(τ − 2ωD(u)) : D(u0), (2.5)

which does not seem to allow to conclude. In fact, the natural idea would be to bound∣∣∣∣−2ω

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇u0

)
·
(
u− u0

)∣∣∣∣ ≤ 2ω

ˆ t

0

∥∥∇u0
∥∥
L∞

∥∥u− u0
∥∥2

L2 , (2.6)

and to split

− 2ω

ˆ t

0

ˆ
R3

(τ − 2ωD(u)) : D(u0) = −2ω

ˆ t

0

ˆ
R3

(
τ − 2ωD(u0)

)
: D(u0)

− 4ω2

ˆ t

0

ˆ
R3

(
D(u0)−D(u)

)
: D(u0). (2.7)

The term in the right hand side of (2.6) is nice since
∥∥∇u0

∥∥
L∞

is locally integrable in
time and can be dealt with using Gronwall’s inequality. The annoying terms are the ones
appearing in (2.7). We can bound the latter by

2ω

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥
L2

∥∥D(u0)
∥∥
L2 + 4Cω2

ˆ t

0

∥∥∇ (u− u0
)∥∥
L2

∥∥D(u0)
∥∥
L2

≤ C
[
ν

ˆ t

0

∥∥τ − 2ωD(u0)
∥∥2

L2 + ν

ˆ t

0

∥∥∇ (u− u0
)∥∥2

L2 +
1

ν

ˆ t

0

∥∥D(u0)
∥∥2

L2

]
and absorb some terms for ν small in the left hand side of (2.5). Yet, the term

1

ν

ˆ t

0

∥∥D(u0)
∥∥2

L2

remaining in the right hand side need not to be small in the limit We→ 0.
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2.2.2 Well-posedness of the profiles

We carry out an Hm a priori estimate on (2.2) in the same fashion as was done in [Tem75]
for the Euler system: there exists C > 0 such that, for m ≥ 3, for all t sufficiently small,

1

2

∥∥u0(t, ·)
∥∥2

Hm +

ˆ t

0

∥∥∇u0(s, ·)
∥∥2

Hm ds ≤
1

2

∥∥u0

∥∥2

Hm + C0

∥∥u0(t, ·)
∥∥3

Hm .

Hence, for all 0 < T < 1
C0‖u0‖Hm

=: T ∗,

∥∥u0
∥∥
L∞((0,T );Hm)

≤ 1
1

‖u0‖Hm
− C0T

<∞. (2.8)

Therefore, there exists a global weak solution u0 ∈ C0
(
[0,∞);H−1

)
∩L∞

(
(0,∞);L2,σ

)
∩

L2
(
(0,∞); Ḣ1

)
of (2.2), such that, for all 0 < T < T ∗, u0 ∈ L∞ ((0, T );Hm). This regu-

larity for m = 4 is sufficient for the rest of the computations. Note that an L2
(
(0, T );H4

)
bound on u0 is not enough to us, so that we do not take advantage of the regularizing
effect of (2.2) to weaken the assumption on the initial data u0.

From (2.4), one retrieves

τ1 = 2ωD(u1)− ∂tτ0 − u0 · ∇τ0 − τ0W (u0) +W (u0)τ0, (2.9)

so that we can introduce it in the momentum equation at first order:{
∂tu

1 + u0 · ∇u1 + u1 · ∇u0 −∆u1 +∇p1 = f1

∇ · u1 = 0
. (2.10)

We complement (2.10) with the initial data u1(0, ·) = 0. Using the equation satisfied by
u0, the source term may be written under the form

f1 := −∂t
(
∇ · τ0

)
−∇ ·

(
u0 · ∇τ0

)
−∇ ·

(
τ0W (u0)

)
+∇ ·

(
W (u0)τ0

)
= ω∆

(
u0 · ∇u0

)
− ω∆2u0 +∇∆p0 − 2ω∇ ·

(
u0 · ∇D(u0)

)
− 2ω∇ ·

(
D(u0)W (u0)

)
+ 2ω∇ ·

(
W (u0)D(u0)

)
= ω∆

(
u0 · ∇u0

)
− ω∆2u0 −∇∇ ·

(
u0 · ∇u0

)
− 2ω∇ ·

(
u0 · ∇D(u0)

)
− 2ω∇ ·

(
D(u0)W (u0)

)
+ 2ω∇ ·

(
W (u0)D(u0)

)
which is in L∞

(
(0, T );L2

)
. Straightforward energy estimates on (2.10) show that a se-

quence of approximated solutions is bounded in L∞
(
(0, T );L2

)
∩ L2

(
(0, T );H1

)
, which

yields the existence of a weak solution

u1 ∈ C0
(
[0, T );H−1

)
∩ L∞

(
(0, T );L2,σ

)
∩ L2

(
(0, T );H1

)
.

Using the regularity of u0, we get the extra estimate u1 ∈ L∞((0, T );H1). Hence, one
deduces from the latter, (2.9) and the equation satisfied by u0, that τ1 ∈ L2

(
(0, T );L2

)
.

2.2.3 Weak strong estimate

We now turn to the estimation of the remainders

U (r) := u− u0 −Weu1 (2.11)
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and τ − τ0. In order to carry out the computations below, we need the regularity on the
profiles u0, u1, τ0 and τ1 we have assumed above. On the one hand

∂tU
(r) + U (r) · ∇u+ u0 · ∇U (r) − (1− ω)∆U (r) +∇

(
p− p0 −We p1

)
= −We

(
u1 · ∇(u− u0)

)
+∇ ·

(
τ − τ0 −We τ1

)
,

which yields

1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +

ˆ t

0

ˆ
R3

(
U (r) · ∇u

)
· U (r)

≤ −We

ˆ t

0

ˆ
R3

(
u1 · ∇(u− u0)

)
· U (r) −

ˆ t

0

ˆ
R3

(
τ − τ0 −We τ1

)
: ∇U (r). (2.12)

On the other hand

∂t(τ−τ0)+u ·∇(τ−τ0)+
τ − τ0

We
= −(u−u0) ·∇τ0−(τ−τ0)W (u)−τ0

(
W (u)−W (u0)

)
+W (u)(τ − τ0) +

(
W (u)−W (u0)

)
τ0 + τ1 + 2ω

D
(
U (r)

)
We

,

which gives

1

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

We

ˆ t

0

∥∥τ − τ0
∥∥2

L2 =
1

2
‖τ0 − 2ωD (u0)‖2L2

+

ˆ t

0

ˆ
R3

τ1 :
(
τ − τ0

)
−
ˆ t

0

ˆ
R3

((
u− u0

)
· ∇τ0

)
:
(
τ − τ0

)
+

ˆ t

0

ˆ
R3

(
τ0W (u− u0)

)
: (τ − τ0) +

ˆ t

0

ˆ
R3

(
W (u0 − u)τ0

)
:
(
τ − τ0

)
+

2ω

We

ˆ t

0

ˆ
R3

∇U (r) :
(
τ − τ0

)
.

(2.13)

The linear combination 2ω(2.12)+We(2.13) gives the energy equality

ω
∥∥U (r)(t, ·)

∥∥2

L2 + 2ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +

ˆ t

0

∥∥τ − τ0
∥∥2

L2

(2.14)

≤ We

2
‖τ0 − 2ωD (u0)‖2L2 − 2ω

ˆ t

0

ˆ
R3

(
U (r) · ∇u

)
· U (r)

− 2ωWe

ˆ t

0

ˆ
R3

(
u1 · ∇(u− u0)

)
· U (r) + We

ˆ t

0

ˆ
R3

τ1 :
(
τ − τ0

)
−We

ˆ t

0

ˆ
R3

((
u− u0

)
· ∇τ0

)
:
(
τ − τ0

)
+ We

ˆ t

0

ˆ
R3

(
τ0W (u− u0)

)
: (τ − τ0)

+ We

ˆ t

0

ˆ
R3

(
W (u0 − u)τ0

)
:
(
τ − τ0

)
+ 4ω2 We

ˆ t

0

ˆ
R3

τ1 : ∇U (r)

=
We

2
‖τ0 − 2ωD (u0)‖2L2 +

ˆ t

0
(A + B + C + D + E + F + G) . (2.15)

We estimate each term of the right hand side of (2.15) separately. The goal is to split
each term into a part which is sufficiently small to be absorbed by the left hand side of
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(2.15), a part which is controlled through a Gronwall type inequality and remainder terms
of order O(We). Let ν > 0. This parameter is going to be taken small independently of
0 < We < 1 in the sequel. We have

|A| ≤ 2ω

∣∣∣∣ˆ
R3

(
U (r) · ∇u0

)
· U (r)

∣∣∣∣+ 2ωWe

∣∣∣∣ˆ
R3

(
U (r) · ∇u1

)
· U (r)

∣∣∣∣
≤ 2ω

∥∥U (r)
∥∥
L3

∥∥u0
∥∥
L6

∥∥∇U (r)
∥∥
L2 + 2ωWe

∥∥U (r)
∥∥
L3

∥∥u1
∥∥
L6

∥∥∇U (r)
∥∥
L2

≤ 2ων−
3
4

∥∥U (r)
∥∥ 1

2

L2

∥∥∇u0
∥∥
L2 ν

3
4

∥∥∇U (r)
∥∥ 3

2

L2 + 2ωWe
∥∥U (r)

∥∥ 1
2

L2

∥∥∇u1
∥∥
L2

∥∥∇U (r)
∥∥ 3

2

L2

≤ ω

2ν3

∥∥U (r)
∥∥2

L2

∥∥∇u0
∥∥4

L2 +
3ων

2

∥∥∇U (r)
∥∥2

L2

+
ω

2ν3
We
∥∥U (r)

∥∥2

L2

∥∥∇u1
∥∥4

L2 +
3ων

2
We
∥∥∇U (r)

∥∥2

L2 .

The second term is of order O
(
We2

)
. Indeed,

|B| ≤ 2ωWe

∣∣∣∣ˆ
R3

(
u1 · ∇U (r)

)
· U (r)

∣∣∣∣+ 2ωWe2

∣∣∣∣ˆ
R3

(
u1 · ∇u1

)
· U (r)

∣∣∣∣
= 2ωWe2

∣∣∣∣ˆ
R3

(
u1 · ∇u1

)
· U (r)

∣∣∣∣
≤ 2ωWe2

∥∥u1
∥∥
L3

∥∥u1
∥∥
L6

∥∥∇U (r)
∥∥
L2 ≤ 2ωWe2

∥∥u1
∥∥ 1

2

L2

∥∥∇u1
∥∥ 3

2

L2

∥∥∇U (r)
∥∥
L2

≤ ω

ν
We2

∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2 + ωνWe2
∥∥∇U (r)

∥∥2

L2 .

The third term is estimated in a simple way

|C| ≤We
∥∥τ1
∥∥
L2

∥∥τ − τ0
∥∥
L2 ≤

We

2

∥∥τ1
∥∥2

L2 +
We

2

∥∥τ − τ0
∥∥2

L2 ;

so is the last term

|G| ≤ 2ω2

ν
We
∥∥τ1
∥∥2

L2 + 2ω2νWe
∥∥∇U (r)

∥∥2

L2 .

For the fourth term, we rely again on a convexity inequality

|D| ≤We

∣∣∣∣ˆ
R3

(
U (r) · ∇τ0

)
:
(
τ − τ0

)∣∣∣∣+ We2

∣∣∣∣ˆ
R3

(
u1 · ∇τ0

)
:
(
τ − τ0

)∣∣∣∣
≤We

∥∥U (r)
∥∥
L2

∥∥∇τ0
∥∥
L∞

∥∥τ − τ0
∥∥
L2 + We2

∥∥u1 · ∇τ0
∥∥
L2

∥∥τ − τ0
∥∥
L2

≤ We

2

∥∥U (r)
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+

We

2

∥∥τ − τ0
∥∥2

L2

+
We2

2

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+

We2

2

∥∥τ − τ0
∥∥2

L2 .

The next two terms are treated analogously:

|E| ≤We

∣∣∣∣ˆ
R3

(
τ0W

(
U (r)

))
:
(
τ − τ0

)∣∣∣∣+ We2

∣∣∣∣ˆ
R3

(
τ0W (u1)

)
:
(
τ − τ0

)∣∣∣∣
≤We

∥∥τ0
∥∥
L∞

∥∥∇U (r)
∥∥
L2

∥∥τ − τ0
∥∥
L2 + We2

∥∥τ0
∥∥
L∞

∥∥∇u1
∥∥
L2

∥∥τ − τ0
∥∥
L2

≤ We ν

2

∥∥τ0
∥∥2

L∞

∥∥∇U (r)
∥∥2

L2 +
We

2ν

∥∥τ − τ0
∥∥2

L2

+
We2

2

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2 +
We2

2

∥∥τ − τ0
∥∥
L2 ,

15



and the same type of estimate holds for F. We deduce from these estimates that there
exists a value of ν > 0, depending (among others) on ω and ‖u0‖H4(Ω), but not on We,
such that for all 0 < We < 1,

ω
∥∥U (r)(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2

≤ We

2
‖τ0 − 2ωD (u0)‖2L2

+ Cν

ˆ t

0

(∥∥∇u0
∥∥4

L2 + We
∥∥∇τ0

∥∥2

L∞
+ We

∥∥∇u1
∥∥4

L2 + 1
)(

ω
∥∥U (r)

∥∥2

L2 +
We

2

∥∥τ − τ0
∥∥
L2

)
+
ω

ν
We2

ˆ t

0

∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2 +
We

2

ˆ t

0

∥∥τ1
∥∥2

L2 (2.16)

+
We2

2

ˆ t

0

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+

2ω2

ν
We

ˆ t

0

∥∥τ1
∥∥2

L2 +
We2

2

ˆ t

0

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2 .

The constant Cν depends on the choice of ν, on ω and again on ‖u0‖H4(Ω), but is inde-
pendent of We. Via Gronwall’s lemma, we finally manage to control a relative entropy
associated to the viscoelastic system (1.1): for all 0 ≤ t ≤ T < T ∗,

ω
∥∥U (r)(t, ·)

∥∥2

L2 + ω(1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2 +
We

2

∥∥τ(t, ·)− τ0(t, ·)
∥∥2

L2 +
1

2

ˆ t

0

∥∥τ − τ0
∥∥2

L2

(2.17)

≤We

[
1

2
‖τ0 − 2ωD (u0)‖2L2 +

ˆ t

0

(ω
ν

We
∥∥u1
∥∥
L2

∥∥∇u1
∥∥3

L2

+
1

2

∥∥τ1
∥∥2

L2 +
We

2

∥∥u1
∥∥2

L2

∥∥∇τ0
∥∥2

L∞
+

We2

2

∥∥τ0
∥∥2

L∞

∥∥∇u1
∥∥2

L2

+
2ω2

ν

∥∥τ1
∥∥2

L2

)]
exp

(
t+ Cν

ˆ t

0

(∥∥∇u0
∥∥4

L2 + We
∥∥∇τ0

∥∥2

L∞
+ We

∥∥∇u1
∥∥4

L2 + 1
))

.

This estimate shows the convergence statement (1.12) of Theorem 3 in the modulated
energy norm.

3 Low Weissenberg limit for a FENE-P type fluid

In this section, we focus on the low Weissenberg limit for global weak solutions of (1.2)
posed in a bounded domain Ω ⊂ Rd, in the torus Ω = Td or in Rd.

The free energy (1.5) is the fundamental tool for the mathematical analysis of the
FENE-P system. It plays a role analogous to the energy (1.3) of the corotational system.
However, due to its non-trivial form, it leads to intricate computations.

16



Because of its importance, we recall the result of D. Hu and T. Lelièvre [HL07]

1

2
‖u(t, ·)‖2L2(Ω) + (1− ω)

ˆ t

0
‖∇u‖2L2(Ω)

+
ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA)− b ln

(
1− Tr(A)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
‖u0‖2L2(Ω) +

ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA0)− b ln

(
1− Tr(A0)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(3.1)

and give an outline of how this a priori estimate is derived. We work with regular solutions
of (1.2). The free energy estimate relies on the computation of the total time derivative
of the left hand side of (3.1) using the formula: for any invertible matrix M = M(t)
depending smoothly on t

(∂t + u · ∇) (ln detM) = Tr
(
M−1(∂t + u · ∇)M

)
. (3.2)

A simple energy estimate yields on the one hand,

1

2

∥∥u(t, ·)
∥∥
L2 + (1− ω)

ˆ t

0

∥∥∇u(t, ·)
∥∥
L2 = −

ˆ t

0

ˆ
Ω
τ : ∇u+

1

2

∥∥u0

∥∥
L2

= − 1

We

(b+ d)ω

b

ˆ t

0

ˆ
Ω

A : ∇u
1− TrA

b

+
1

2

∥∥u0

∥∥
L2 . (3.3)

On the other hand, using (3.2) and the equation on the structure tensor A, we have

−(∂t + u · ∇) ln (detA) =
1

We

d

1− TrA
b

− 1

We
Tr
(
A−1

)
,

−b(∂t + u · ∇) ln

(
1− TrA

b

)
=

2D(u) : A

1− TrA
b

− 1

We

TrA(
1− TrA

b

)2 +
1

We

d

1− TrA
b

,

which boils down to

ˆ
Ω

[
− ln (detA)− b ln

(
1− TrA

b

)
+ (b+ d) ln

(
b

b+ d

)]
(T ) =

ˆ t

0

ˆ
Ω

2D(u) : A

1− TrA
b

− 1

We

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

+

ˆ
Ω

[
− ln (detA0)− b ln

(
1− TrA0

b

)
+ (b+ d) ln

(
b

b+ d

)]
(t). (3.4)

The estimate (3.1) is thus seen to hold thanks to the linear combination (3.3)+ 1
We

(b+d)ω
2b (3.4).

This proof actually serves as a model for our more complicated computations of the relative
entropy estimates below.

As for the asymptotic analysis of the corotational system, we first investigate the weak
convergence of u. In a second part, introducing corrector terms, we manage to prove the
strong convergence of u, A and τ . The strong convergence is the truly tricky point.
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3.1 Weak convergence

Letting We go to 0 in (1.2) yields formally that A converges toward

A0 :=
b

b+ d
I .

In the rest of this section we handle the proof of Proposition 2.
The convergence of A toward A0 comes directly from the entropy inequality (3.1). The

main observations, which lead to such a convergence result, are that the functionals

F : A 7−→ − ln (detA)− b ln

(
1− TrA

b

)
+ (b+ d) ln

(
b

b+ d

)
(3.5)

H : A 7−→ TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
(3.6)

defined for appropriate symmetric positive definite matrices A with 0 < TrA < b,

• have a global minimum at A = A0 = b
b+d I with value 0,

• are globally strictly convex,

• and thus yield a bound on
∣∣A−A0

∣∣2.
Hence, one can use the decay of the free energy to prove the estimates (1.8), (1.10a) and
(1.10b). Notice that we also have the inequality 0 ≤ F ≤ H.

We conclude, using these properties and the decay of the free energy that for all t > 0,

0 ≤
ˆ

Ω

∣∣A−A0
∣∣2 (t) ≤ C

ˆ
Ω

[
− ln (detA)− b ln

(
1− Tr(A)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(t)

≤ C We ‖u0‖2L2(Ω)

+
ω(b+ d)

2b

ˆ
Ω

[
− ln (detA0)− b ln

(
1− Tr(A0)

b

)
+ (b+ d) ln

(
b

b+ d

)]
.

(3.7)
and that

0 ≤
ˆ t

0

ˆ
Ω

∣∣A−A0
∣∣2

≤ C
ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]

≤ 1

2
We2 ‖u0‖2L2(Ω)

+
ω(b+ 2)

2b
We

ˆ
Ω

[
− ln (detA0)− b ln

(
1− Tr(A0)

b

)
+ (b+ d) ln

(
b

b+ d

)]
.

(3.8)
The bounds (3.7) and (3.8) imply the estimates of Proposition 2.

It remains to establish the convergence of u and τ . Assume now that initial data is
well-prepared, i.e. that (1.9) is satisfied. We deduce a uniform L2

(
(0,∞);L2

)
bound on τ

from the convergence of A. Indeed, let us rewrite τ in the following way:

τ =
(b+ d)ω

b

1

We

[
A

1− TrA
b

− I

]
=

(b+ d)ω

b

1

We

 A−A0

1− TrA0

b

+A
TrA− TrA0

b
(

1− TrA0

b

) (
1− TrA

b

)
 .

(3.9)
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The first term in the right hand side of (3.9)

1

We

A−A0

1− TrA0

b

is bounded in L2
(
(0,∞);L2

)
uniformly in We, thanks to the convergence result (1.10b) for

well-prepared data. For the second term, we notice that A is bounded in L∞ ((0,∞);L∞)
by b and that

(b+ d)ω

b

1

We

TrA− TrA0(
1− TrA0

b

) (
1− TrA

b

) =
(b+ d)ω

b

1

We

[
TrA

1− TrA
b

− TrA0

1− TrA0

b

]
= Tr τ.

This part is bounded thanks to the decay of the free energy. Indeed, using the inequality

TrA Tr
(
A−1

)
≥ d2

valid for the positive definite matrices A, we find that the fourth term in the right hand
side of (3.1) bounds the L2

(
(0,∞);L2

)
norm of Tr τ :

TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+ TrA−1 ≥ TrA(
1− TrA

b

)2 − 2d

1− TrA
b

+
d2

TrA

≥
[
TrA− d

(
1− TrA

b

)]2
TrA

(
1− TrA

b

)2
≥
[
TrA− d

(
1− TrA

b

)]2
b
(
1− TrA

b

)2
=

1

b

[
TrA

1− TrA
b

− d

]2

≥ b

(b+ d)2ω2
We2 (Tr τ)2 . (3.10)

It remains to see the convergence of τ and u. Assume that d = 2, 3. From (3.1), it
comes that u is uniformly bounded in We in L∞

(
(0,∞);L2

)
and L2

(
(0,∞); Ḣ1

)
. Rea-

soning in the same manner as in Section 2.1, we deduce from the uniform bound on τ in
L2 ((0,∞)× Ω) the existence of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
,

such that u converges to u0 in a fashion similar to (2.1). To see the weak convergence of
τ , the idea is to use the equation on A in the system (1.2):

τ = −(b+ d)ω

b

[
∂tA+∇ · (uA)−∇uA−A (∇u)T

]
. (3.11)

The right hand side of (3.11) converges in the sense of distributions toward

−(b+ d)ω

b

[
∂tA

0 + u0 · ∇A0 − 2
b

b+ d
D
(
u0
)]

= 2ωD
(
u0
)
.

Finally, we can pass to the weak limit in the equation for u0, and get that u0 solves the
Navier-Stokes system (1.6).

Remark 6. Notice that if one further assumes (1.9) with o (We) instead of O (We), we
can prove that u0 satisfies the energy estimate associated to the Navier-Stokes system.
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3.2 Strong convergence

This section is devoted to the proof of our main convergence result, namely Theorem 4.
We aim at showing that u converges strongly toward u0 solving the Navier-Stokes system,
for sufficiently nice initial data. Let

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
be a global weak solution of the Navier-Stokes system (1.6), with no-slip boundary condi-
tion, associated to the regular initial data u0 ∈ H4,σ (Ω). As in Section 2.2.2, there exists
0 < T ∗ ≤ ∞ independent of We such that u0, in addition, belongs to L∞

(
(0, T );H4

)
for

all 0 < T < T ∗.
We follow the same steps as in the proof of the strong convergence for the corotational

model (cf. Section 2.2):

1. Thanks to formal computations we identify relevant corrector terms for u, A and τ .

2. From the entropy for the FENE-P system, we then derive a formula for the relative
entropy.

3. We finally show a Gronwall type estimate on the relative entropy.

This scheme proves more complicated due to the complex form of the free energy (3.1)
associated to the FENE-P system in comparison to the simple energy estimate (1.3). From
the analysis carried out in Section 3.1, we already know that we have the following control

ω(b+ d)

2b

1

We

∥∥A(t, ·)−A0(t, ·)
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0
∥∥2

L2

≤ ω(b+ d)

2b

1

We

ˆ
Ω

[
− ln (detA)− b ln

(
1− Tr(A)

b

)
+ (b+ d) ln

(
b

b+ d

)]
(t)

+
ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω

[
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)]
.

However, as emphasized in the proof of the strong convergence for the corotational
model, we need to push the expansions of u, A and τ up to the order 1 in We, in order
end up at a Gronwall inequality with a small source term, of order O (We). This requires
to handle the term

−
(
τ − τ0

)
: ∇
(
u− u0 −Weu1

)
(3.12)

coming from a weak strong energy estimate on the momentum equation. One of our main
difficulties is that for the FENE-P system the transport equation holds on the structure
tensor A, not on the stress tensor τ as in the corotational system (1.1), and that A and τ
are related by a non-trivial nonlinear relation. This accounts for the difficulty to extract
the terms in (3.12) from our equations.

We face this issue by expanding the entropy (3.1) around the corrector A0 +WeA1. We
thus derive a new entropy, the relative entropy (3.17), for the FENE-P system, relevant to
the study of the low Weissenberg asymptotics. Notice that expanding the entropy around
A0 rather than around A0 + WeA1 would not be enough.

The expansion of the relative entropy in terms of We makes it possible to underline
the correspondence between the corotational and the FENE-P systems. Roughly speaking,
our leading idea is that the terms at main order O(1) in We can be handled similarly in
both cases. The other terms are remainder terms, which are shown to be small and hence
do not make a difference at the limit.
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3.2.1 Formal computation of the corrector terms

We simply rewrite the FENE-P system in terms of Π(A) := A
1−TrA

b

− I:
∂tu+ u · ∇u− (1− ω)∆u+∇p = (b+d)ω

b
1

We∇ ·Π(A)
∇ · u = 0

∂tA+ u · ∇A−∇uA−A (∇u)T + 1
WeΠ(A) = 0

τ = (b+d)ω
b

1
WeΠ(A)

. (3.13)

As for the corotational system, we begin with the formal computation of the corrector
terms. Let us assume that

u ' u0 + Weu1, p ' p0 + We p1, A ' A0 + WeA1 + We2A2.

Expanding Π near A0 yields:

Π(A0 +H) = Π(A0) + (DΠ)(A0)H +
1

2
(D2Π)(A0)(H,H) +O(H3).

Hence, one infers

Π(A0 + WeA1 + We2A2) =
A0

1− TrA0

b

− I

+ We

 A0 TrA1

b
(

1− TrA0

b

)2 +
A1

1− TrA0

b


+ We2

 A0 TrA2

b
(

1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(

1− TrA0

b

)3 +
A1 TrA1

2b
(

1− TrA0

b

)2


+O

(
We3

)
.

Plugging the ansatz in the momentum equation, we get that u0 solves the Navier-Stokes
system (1.6), and at first order in We that u1 solves

∂tu
1 + u0 · ∇u1 + u1 · ∇u0 − (1− ω)∆u1 +∇p1

=
(b+ d)ω

b
∇ ·

 A0 TrA2

b
(

1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(

1− TrA0

b

)3 +
A1 TrA1

2b
(

1− TrA0

b

)2

 .
Note that both u0 and u1 are incompressible fields, and meet the no-slip boundary condition
on ∂Ω. We impose the initial condition u1(0, ·) = 0.

Plugging now the ansatz in the equation on the structure tensor A and identifying the
orders in We leads to

A0

1− TrA0

b

− I = 0,

∂tA
0 + u0 · ∇A0 −∇u0A0 −A0

(
∇u0

)T
+

A0 TrA1

b
(

1− TrA0

b

)2 +
A1

1− TrA0

b

= 0,

∂tA
1 + u0 · ∇A1 + u1 · ∇A0 −∇u1A0 −∇u0A1 −A1

(
∇u0

)T −A0
(
∇u1

)T
+

A0 TrA2

b
(

1− TrA0

b

)2 +
A2

1− TrA0

b

+
A0(TrA1)2

2b2
(

1− TrA0

b

)3 +
A1 TrA1

2b
(

1− TrA0

b

)2 = 0,
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from which we retrieve

A0 =
b

b+ d
I,

A1 = 2

(
b

b+ d

)2

D(u0) and TrA1 = 0,

TrA2 = 4

(
b

b+ d

)4

D(u0) : D(u0).

(3.14)

Letting

τ1 :=
(b+ d)ω

b

 A0 TrA2

b
(

1− TrA0

b

)2 +
A2

1− TrA0

b

 ,
we notice that

∂tA
1 + u0 · ∇A1 −∇u1A0 −A0

(
∇u1

)T −∇u0A1 −A1
(
∇u0

)T
+

b

ω(b+ d)
τ1 = 0.

(3.15)

Remark 7 (Analogy with the corotational system). Again, there are some similarities
between the correctors τ0 for the corotational system, and A1 for the FENE-P system. The
equation (2.4) for τ0 and the equation (3.15) have an analogous structure, and A1 and τ0

are equal up to a constant. This parallel is a leitmotiv of our further computations.

Remark 8 (On the regularity of the corrector terms). Let us say some words about the
regularity of the profiles. We argue exactly as in Section 2.2.2. As soon as u0 ∈ H4(Ω),
we get that

u0 ∈ L∞
(
(0, T );H4

)
,

u1 ∈ L∞
(
(0, T );H1

)
,

A1 ∈ L∞
(
(0, T );H3

)
⊂ L∞ ((0, T )× Ω) ,

τ0 ∈ L∞
(
(0, T );H3

)
,

τ1 ∈ L2
(
(0, T );L2

)
.

(3.16)

Remark 9 (On the definite positivity of the correctors). The first-order corrector A0

is evidently definite positive. For We sufficiently small, this happens to be also the case
for A0 + WeA1, uniformly in t and x. This follows from the fact that D(u0) belongs to
L∞ ((0, T )× Ω).

3.2.2 Relative entropy: expansion of the free energy at first-order

Expansion of F Let us consider

F̃ : A 7−→ F(A)−F
(
A0 + WeA1

)
−DF

(
A0 + WeA1

) (
A−A0 −WeA1

)
,

where F is defined by (3.5). Expanding F by the Taylor formula yields

− ln (det(B +H)) = − ln(det(B))− Tr
(
B−1H

)
+O

(
H2
)
,

−b ln

(
1− Tr(B +H)

b

)
= −b ln

(
1− TrB

b

)
+

TrH

1− TrB
b

+O
(
H2
)
,

F(B +H) = F(B)− Tr
(
B−1H

)
+

TrH

1− TrB
b

+O(H2).
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Therefore,

F̃(A) = − ln(det(A))−b ln

(
1− TrA

b

)
+ln

(
det(A0 + WeA1)

)
+b ln

(
1−

Tr
(
A0 + WeA1

)
b

)

+ Tr
((
A0 + WeA1

)−1 (
A−A0 −WeA1

))
−

Tr
(
A−A0 −WeA1

)
1− TrA0

b

.

The positivity of the Hessian matrix and the Taylor formula with integral rest at order 1

F(A) = F
(
A0 + WeA1

)
+DF

(
A0 + WeA1

) (
A−A0 −WeA1

)
+

ˆ 1

0
(1− t)D2F

(
A0 + WeA1 + t

(
A−A0 −WeA1

)) (
A−A0 −WeA1

)2
dt

shows that F̃(A) is positive and bounds |A−A0 −WeA1|2.

Expansion of H In the same fashion, we consider

H̃ : A 7−→ H(A)−H
(
A0 + WeA1

)
−DH

(
A0 −WeA1

) (
A−A0 −WeA1

)
.

where H is defined by (3.6). Expanding H by the Taylor formula yields

Tr(B +H)(
1− Tr(B+H)

b

)2 =
TrB(

1− TrB
b

)2 +
1(

1− TrB
b

)2
[

1 +
2 TrB

b
(
1− TrB

b

)]TrH +O
(
H2
)
,

− 2d

1− Tr(B+H)
b

= − 2d

1− TrB
b

− 2dTrH

b
(
1− TrB

b

)2 +O
(
H2
)
,

Tr
(
(B +H)−1

)
= Tr

(
B−1

)
− Tr

(
H

B2

)
+O

(
H2
)
,

so that

H̃(A) =
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
−

Tr
(
A0 + WeA1

)(
1− Tr(A0+WeA1)

b

)2 +
2d

1− Tr(A0+WeA1)
b

− Tr
((
A0 + WeA1

)−1
)

− 1(
1− Tr(A0+WeA1)

b

)2

1 +
2 Tr

(
A0 + WeA1

)
b
(

1− Tr(A0+WeA1)
b

)
Tr

(
A−A0 −WeA1

)
+

2dTr
(
A−A0 −WeA1

)
b
(

1− Tr(A0+WeA1)
b

)2 + Tr

(
A−A0 −WeA1

(A0 + WeA1)2

)

=
TrA(

1− TrA
b

)2 − 2d

1− TrA
b

+ Tr
(
A−1

)
− TrA0(

1− TrA0

b

)2 +
2d

1− TrA0

b

− Tr
((
A0 + WeA1

)−1
)

−
Tr
(
A−A0 −WeA1

)(
1− TrA0

b

)2 + Tr

(
A−A0 −WeA1

(A0 + WeA1)2

)
.
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The positivity of the Hessian matrix and the Taylor formula with integral rest at order 1

H(A) = H
(
A0 + WeA1

)
+DH

(
A0 + WeA1

) (
A−A0 −WeA1

)
+

ˆ 1

0
(1− t)D2H

(
A0 + WeA1 + t

(
A−A0 −WeA1

)) (
A−A0 −WeA1

)2
dt

shows that H̃(A) is positive and bounds |A−A0 −WeA1|2.
These remarks lead us to consider the quantity

E(t) :=
1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

+
ω(b+ d)

2b

1

We

ˆ
Ω
F̃(A)(t, ·) +

ω(b+ d)

2b

1

We2

ˆ t

0

ˆ
Ω
H̃(A). (3.17)

We call it the relative entropy of our system. Its role is analogous to the relative entropy
(2.17) for the corotational system.

3.2.3 Estimate of the relative entropy

To put it in a nutshell, our purpose is to establish a Gronwall type inequality on

D :=
1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

+
ω(b+ d)

2b

1

We

∥∥A−A0 −WeA1
∥∥2

L2 +
ω(b+ d)

2b

1

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2 ,

for d = 2, 3. This latter quantity is, of course, smaller than the relative entropy: D ≤ CE.
Roughly speaking, the Gronwall inequality should look like

D ≤ E(0) +

ˆ t

0
C(s)D(s)ds+O(We), (3.18)

where s 7→ C(s) is a positive and locally bounded function. Notice that this is exactly what
we did for the corotational system: see in particular (2.16). If we manage to prove (3.18),
we can expect to get the following bounds:∥∥u− u0

∥∥
L2((0,T );H1)

= O
(√

We
)
, (3.19)∥∥A−A0

∥∥
L∞((0,T );L2)

= O (We) , (3.20)∥∥A−A0 −WeA1
∥∥
L2((0,T );L2)

= O
(

We3/2
)
, (3.21)

provided that E(0) = O(We) (well-prepared initial data for u and A). Moreover, improving
the bound on A−A0−WeA1 yields a better bound on τ − τ0 in L1. This is a consequence
of the formulas

τ − τ0 =
(b+ d)ω

b

1

We
Π(A)− 2ωD(u0)

=
(b+ d)ω

b

1

We

A−A0 −WeA1

1− TrA0

b

+A
TrA− TrA0 −We TrA1

b
(

1− TrA0

b

) (
1− TrA

b

)
 . (3.22a)
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and

1

We
A

TrA− TrA0 −We TrA1

b
(

1− TrA0

b

) (
1− TrA

b

)
=

1

We

(
A

1− TrA
b

− I + I

)
TrA− TrA0 −We TrA1

b
(

1− TrA0

b

)
=

1

We

(
A

1− TrA
b

− I

)
TrA− TrA0 −We TrA1

b
(

1− TrA0

b

) +
1

We

TrA− TrA0 −We TrA1

b
(

1− TrA0

b

) .

(3.22b)

In order to establish a Gronwall type estimate on D, we compute each of the terms
appearing in (3.17). The two first terms can be handle thanks to an energy estimate on
the momentum equation. We have

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ,
∂tu

0 + u · ∇u0 − (1− ω)∆u0 +∇p0 = ∇ · τ0 +
(
u− u0

)
· ∇u0,

∂tu
1 + u · ∇u1 − (1− ω)∆u1 +∇p1 = ∇ · τ1 +

(
u− u0

)
· ∇u1 − u1 · ∇u0,

which yields

(∂t + u · ∇)
(
u− u0 −Weu1

)
− (1− ω)∆

(
u− u0 −Weu1

)
+∇

(
p− p0 −We p1

)
= ∇ ·

(
τ − τ0 −We τ1

)
−
(
u− u0 −Weu1

)
· ∇u0 −We

(
u− u0

)
· ∇u1. (3.23)

Testing the equation (3.23) against U (r) := u − u0 −Weu1, yields the estimate of the
following lemma.

Lemma 10. We have the energy estimate

1

2

∥∥U (r)(t, ·)
∥∥2

L2 + (1− ω)

ˆ t

0

∥∥∇U (r)
∥∥2

L2

= −
ˆ t

0

ˆ
Ω

(
τ − τ0 −We τ1

)
: ∇U (r) −

ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

−We

ˆ t

0

ˆ
Ω

((
u− u0

)
· ∇u1

)
· U (r). (3.24)

We split the right hand side of (3.24) into terms which are of order O (We)

−We

ˆ t

0

ˆ
Ω
τ0 : ∇u1, We

ˆ t

0

ˆ
Ω
τ1 : ∇U (r), We

ˆ t

0

ˆ
Ω
τ : ∇u1,

−We

ˆ t

0

ˆ
Ω

((
u− u0

)
· ∇u1

)
· U (r),

a term which allows to close the Gronwall estimate

−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

and other terms

−
ˆ t

0

ˆ
Ω
τ : ∇u, −

ˆ t

0

ˆ
Ω
τ0 : ∇u0,

ˆ t

0

ˆ
Ω
τ : ∇u0,

ˆ t

0

ˆ
Ω
τ0 : ∇u, (3.25)
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which need not be small. Luckily enough, we manage to show that the latter terms do not
appear in the final estimate of the relative entropy.

We now state and prove three key lemmas showing that the terms of the relative entropy
involving F̃(A) and H̃(A) cancel the terms in (3.25). From the proof of the entropy estimate
(3.1), we already know that this holds for the term −

´ t
0

´
Ω τ : ∇u.

Lemma 11. We have

ω(b+ d)

2b

1

We

[ˆ
Ω
F(A) +

1

We

ˆ t

0

ˆ
Ω
H(A)

]
=
ω(b+ d)

2b

1

We

ˆ
Ω
F(A)

∣∣∣∣
t=0

+

ˆ t

0

ˆ
Ω
τ : ∇u. (3.26)

The next lemma indicates how to get rid of the term −
´ t

0

´
Ω τ

0 : ∇u0:

Lemma 12. We have

− ω(b+ d)

2b

1

We

[ˆ
Ω
F
(
A0 + WeA1

)
+

1

We

ˆ t

0

ˆ
Ω
H
(
A0 + WeA1

)]
= −ω(b+ d)

2b

1

We

ˆ
Ω
F
(
A0 + WeA1

)∣∣∣∣
t=0

−
ˆ t

0

ˆ
Ω
τ0 : ∇u0 +O (We) . (3.27)

Let us notice that the sign of −
´ t

0

´
Ω τ

0 : ∇u0 is precisely opposite to the sign we would
like in order to kill −

´ t
0

´
Ω τ

0 : ∇u0 (cf. (3.25)). However, we will see (cf. Lemma 15),
that the term

− 1

We2

ω(b+ d)

2b

ˆ t

0

ˆ
Ω
DH

(
A0 + WeA1

) (
A−A0 −WeA1

)
.

adds the quantity 2
´ t

0

´
Ω τ

0 : ∇u0, so that we will recover what we wish.

Proof of Lemma 12. The proof consists merely in a computation of the total time deriva-
tive ∂t + u · ∇ of the left hand side of (3.27). Note that we often use the fact that
Tr
(
(∂t + u · ∇)A1

)
= 0. Expanding in powers of We, we get

− (∂t + u · ∇)F
(
A0 + WeA1

)
− 1

We
H
(
A0 + WeA1

)
= We Tr

((
A0 + WeA1

)−1
(∂t + u · ∇)A1

)
− 1

We

 TrA0(
1− TrA0

b

)2 −
2d

1− TrA0

b

+ Tr
((
A0 + WeA1

)−1
)

= −We Tr

((
A1
)2

(A0)3

)
+ We2

[ ∞∑
k=1

(−1)k Wek−1 Tr

( (
A1
)k

(A0)k+1
(∂t + u · ∇)A1

)

−
∞∑
k=3

Wek−3(−1)k Tr

( (
A1
)k

(A0)k+1

)]
.

We focus on the term of order We. It follows from the expression (3.14) of A1 that

−ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A1
)2

(A0)3

)
= −τ0 : D

(
u0
)
.
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Therefore (3.27) holds with a remainder term equal to

ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

[ ∞∑
k=1

(−1)k Wek−1 Tr

( (
A1
)k

(A0)k+1
(∂t + u · ∇)A1

)

−
∞∑
k=3

Wek−3(−1)k Tr

( (
A1
)k

(A0)k+1

)]
= O (We) ,

(3.28)

which concludes the proof of the lemma.

Remark 13 (On the remainder term). The notation O (We) in (3.27) hides the structure
of the remainder term. The term

ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

∞∑
k=1

(−1)k Wek−1 Tr

( (
A1
)k

(A0)k+1
(∂t + u · ∇)A1

)

in (3.28) involves u. One can rely on the standard splitting of the total time derivative

∂t + u · ∇ = ∂t + u0 · ∇+
(
u− u0 −Weu1

)
· ∇+ Weu1 · ∇, (3.29)

and estimate the term∣∣∣∣∣ω(b+ d)

2b
We

ˆ t

0

ˆ
Ω

∞∑
k=1

(−1)k Wek−1 Tr

( (
A1
)k

(A0)k+1

(
u− u0 −Weu1

)
· ∇A1

)∣∣∣∣∣
≤ ω(b+ d)

4b
We

 ∞∑
k=1

Wek−1

ˆ t

0

ˆ
Ω

∣∣∣∣∣
(
A1
)k

(A0)k+1

∣∣∣∣∣
2

+

∞∑
k=1

Wek−1

ˆ t

0

ˆ
Ω

∣∣(u− u0 −Weu1
)
· ∇A1

∣∣2 .
Then the first term in the right hand side above is O (We), and the second term can be
absorbed in

´ t
0 C(s)D(s)ds (see the Gronwall inequality (3.18)).

Remark 14 (On the convergence of the infinite series). Using the regularity statements
(3.16) and the identity (3.29), we notice that

(∂t + u · ∇)A1 ∈ L2 ((0, T )× Ω) ,

so that for all k ≥ 1,

ˆ t

0

ˆ
Ω

∣∣∣∣∣(−1)k Wek−1 Tr

( (
A1
)k

(A0)k+1
(∂t + u · ∇)A1

)∣∣∣∣∣
≤Wek−1

(
b+ d

b

)k+1(ˆ t

0

ˆ
Ω

∣∣A1
∣∣2k) 1

2 ∥∥(∂t + u · ∇)A1
∥∥
L2((0,T )×Ω)

≤Wek−1

(
b+ d

b

)k+1 ∥∥A1
∥∥k
L∞((0,T );H3)

∥∥(∂t + u · ∇)A1
∥∥
L2((0,T )×Ω)

.

Thus, the series converges for We sufficiently small, i.e.

0 < We <
b

b+ d

1

‖A1‖L∞((0,T );H3)

.
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We finally show that the crossed terms
´ t

0

´
Ω τ : ∇u0 and

´ t
0

´
Ω τ

0 : ∇u can be recovered
thanks to the first-order terms in the Taylor expansion of F and H around A0 + WeA1.
This emphasizes the importance of pushing the Taylor expansion of F and H up to the
order 1.

Lemma 15. We have

− ω(b+ d)

2b

1

We

[ˆ
Ω
DF

(
A0 + WeA1

) (
A−A0 −WeA1

)
+

1

We

ˆ t

0

ˆ
Ω
DH

(
A0 + WeA1

) (
A−A0 −WeA1

)]
= −ω(b+ d)

2b

1

We

ˆ
Ω
DF

(
A0 + WeA1

) (
A−A0 −WeA1

)∣∣∣∣
t=0

−
ˆ t

0

ˆ
Ω

[
τ : ∇u0 + τ0 : ∇u

]
+ 2

ˆ t

0

ˆ
Ω
τ0 : ∇u0

− ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u · ∇)A1

(A0)2

(
A−A0 −WeA1

))
+

2(b+ d)

b2

ˆ t

0

ˆ
Ω

Tr
(
A−A0 −WeA1

)
τ : ∇u0

+
3ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A−A0 −WeA1

) (A1
)2

(A0)4

)
+O (We) .

(3.30)

Again, the proof relies on a computation of the total time derivative of the left hand
side of (3.30) and on expansions in We. The computations, however, are much more heavy
than in the preceding lemma. We shall see that the terms of order O

(
We0

)
in

− (∂t + u · ∇)DF
(
A0 + WeA1

) (
A−A0 −WeA1

)
− 1

We

ˆ
Ω
DH

(
A0 + WeA1

) (
A−A0 −WeA1

)
compensate each other, which is not a surprise as DF

(
A0
)

= DH
(
A0
)

= 0. The crucial
terms appear at order O (We). The fundamental trick we use in order to highlight the
crossed terms

´ t
0

´
Ω τ : ∇u0 and

´ t
0

´
Ω τ

0 : ∇u is to express A in terms of τ and TrA:

A =

(
1− TrA

b

)[
We

b

(b+ d)ω
τ + I

]
. (3.31)

This is somewhat reminiscent of the change of variable A = We
ω τ + I for the corotational

and Oldroyd-B systems (see [HL07]). Thanks to (3.31), we get

(∂t + u · ∇)A = ∇uA+A (∇u)T − b

(b+ d)ω
τ

= 2

(
1− TrA

b

)
D(u)− b

(b+ d)ω
τ + We

b

(b+ d)ω

(
1− TrA

b

)[
∇uτ + τ (∇u)T

]
.

(3.32)

Moreover, we split the term

2

(
1− TrA

b

)
D(u) = 2

(
1− TrA0

b

)
D(u)− 2

Tr
(
A−A0 −WeA1

)
b

D(u),
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so that

(∂t + u · ∇)A =
b

(b+ d)ω
(2ωD(u)− τ)

− 2
Tr
(
A−A0 −WeA1

)
b

D(u) + We
b

(b+ d)ω

(
1− TrA

b

)[
∇uτ + τ (∇u)T

]
. (3.33)

Proof of Lemma 15. The proof consists in the calculation of

− (∂t + u · ∇)DF
(
A0 + WeA1

) (
A−A0 −WeA1

)
(3.34)

− 1

We

ˆ
Ω
DH

(
A0 + WeA1

) (
A−A0 −WeA1

)
(3.35)

We expand this quantity in terms of We. As expounded above, we are especially interested
in the terms of order 1. For these terms, we use the change of variable (3.31) in a decisive
way. All the terms of order We2 or more are put in the remainder. In the sequel, we first
compute (3.34), then (3.35).
• We begin with the computation of (3.34):

− (∂t + u · ∇)DF
(
A0 + WeA1

) (
A−A0 −WeA1

)
= −We Tr

(
(∂t + u · ∇)A1

(A0 + WeA1)2

(
A−A0 −WeA1

))
(3.36a)

+ Tr
((
A0 + WeA1

)−1
(∂t + u · ∇)

(
A−A0 −WeA1

))
(3.36b)

−
Tr
(
(∂t + u · ∇)

(
A−A0 −WeA1

))
1− TrA0

b

(3.36c)

We now look closely at the two first terms appearing in the right hand side above.
B Term (3.36a):

−We Tr

(
(∂t + u · ∇)A1

(A0 + WeA1)2

(
A−A0 −WeA1

))
= −We Tr

(
(∂t + u · ∇)A1

(A0)2

(
A−A0 −WeA1

))
−We2

∞∑
k=1

(−1)k(k + 1) Wek−1 Tr

(
(∂t + u · ∇)A1

(A0)2

(
A1

A0

)k (
A−A0 −WeA1

))
.

(3.37)

B Term (3.36b):

Tr
((
A0 + WeA1

)−1
(∂t + u · ∇)

(
A−A0 −WeA1

))
= Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

)
A0

)

−We Tr

(
(∂t + u · ∇)A

(A0)2 A1

)
+ We2

[ ∞∑
k=2

(−1)k Wek−2 Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

) (A1
)k

(A0)k+1

)
(3.38)

+ Tr

(
(∂t + u · ∇)A1

(A0)2 A1

)]
.

29



Adding the terms of order We0 in (3.36), we already see that

Tr

(
(∂t + u · ∇)

(
A−A0 −WeA1

)
A0

)
−

Tr
(
(∂t + u · ∇)

(
A−A0 −WeA1

))
1− TrA0

b

= 0,

which means that the zeroth-order term vanishes.
At the order O (We) in (3.36), we have the terms

− Tr

(
(∂t + u · ∇)A1

(A0)2

(
A−A0 −WeA1

))
− Tr

(
(∂t + u · ∇)A

(A0)2 A1

)
. (3.39)

We concentrate on the second term in (3.39). We rely on the identity (3.33):

−Tr

(
(∂t + u · ∇)A

(A0)2 A1

)
= − b

(b+ d)ω
Tr

(
2ωD(u)− τ

(A0)2 A1

)
+ 2

Tr
(
A−A0 −WeA1

)
b

Tr

(
D(u)

(A0)2A
1

)
−We

b

(b+ d)ω

(
1− TrA

b

)
Tr

(
∇uτ + τ (∇u)T

(A0)2 A1

)

Notice that

− b

(b+ d)ω
Tr

(
2ωD(u)− τ

(A0)2 A1

)
=

2b

(b+ d)ω
(τ − 2ωD(u)) : D

(
u0
)

=
2b

(b+ d)ω

[
τ : ∇u0 − τ0 : ∇u

]
,

which contains some of the crossed terms appearing in (3.30), though not with the right
sign for τ : ∇u0. The analysis of (3.35) makes it possible to recover all the crossed terms
of (3.30).
• Let us now expand (3.35) in powers of We:

− 1

We
DH

(
A0 + WeA1

) (
A−A0 −WeA1

)
= − 1

We

Tr
(
A−A0 −WeA1

)(
1− TrA0

b

)2 +
1

We
Tr

(
A−A0 −WeA1

(A0 + WeA1)2

)

= −2 Tr

((
A−A0 −WeA1

) A1

(A0)3

)
+ 3 We Tr

((
A−A0 −WeA1

) (A1
)2

(A0)4

)

+ We2
∞∑
k=3

(−1)k(k + 1) Wek−3 Tr

((
A−A0 −WeA1

) (A1
)k

(A0)k+2

)
. (3.40)

Yet, thanks to (3.31)

−2 Tr

((
A−A0 −WeA1

) A1

(A0)3

)
= −2 Tr

(
AA1

(A0)3

)
+ 2 We Tr

((
A1
)2

(A0)3

)
.
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On the one hand,

− 2 Tr

(
AA1

(A0)3

)
= −4 We

(
1− TrA

b

)
1

ω
τ : D

(
u0
)

= −4 We
b

(b+ d)ω
τ : ∇u0 + 4 We

Tr
(
A−A0 −WeA1

)
ωb

τ : ∇u0,

and on the other hand

2 We Tr

((
A1
)2

(A0)3

)
=

4b

ω(b+ d)
We τ0 : ∇u0.

We conclude that (3.30) holds. Notice that one uses ideas similar to those of the remark 13
in order to see that the remainder terms (3.37), (3.38) and (3.40) are indeed of orderO (We).
To ascertain the convergence of the infinite series, one argues as in the remark 14.

Gathering the estimates of the lemmas 11, 12 and 15, we end up at the following
estimate of the relative entropy: there exists C > 0 such that for all 0 < We < 1,

CE(t) ≤ E(0)−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

− ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u · ∇)A1

(A0)2

(
A−A0 −WeA1

))
(3.41a)

+
2(b+ d)

b2

ˆ t

0

ˆ
Ω

Tr
(
A−A0 −WeA1

)
τ : ∇u0 (3.41b)

+
3ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
A−A0 −WeA1

) (A1
)2

(A0)4

)
(3.41c)

+O (We) .

We proceed for the term

−
ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

exactly as we did for A in (2.15), while proving the strong convergence of the corotational
system. In dimension d = 3, for instance, we bound for all ν > 0∣∣∣∣ˆ t

0

ˆ
Ω

(
U (r) · ∇u0

)
· U (r)

∣∣∣∣ ≤ 1

4ν3

ˆ t

0

∥∥∇u0
∥∥4

L2(Ω)

∥∥U (r)
∥∥2

L2(Ω)
+

3ν

4

ˆ t

0

∥∥∇U (r)
∥∥2

L2(Ω)
,

so that for ν sufficiently small independent of We, we can absorb the second term in the
left hand side of (3.41).

Remark 16 (On the dimension). Notice that this is the only step of our proof which is
dependent on the dimension. In particular the computations of lemmas 11, 12 and 15 can
be carried out for every d ≥ 2.
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For (3.41a), we first split the total time derivative according to (3.29). We then estimate∣∣∣∣ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
(∂t + u0 · ∇)A1

(A0)2

(
A−A0 −WeA1

))∣∣∣∣
≤ ω(b+ d)

4b

We2

ν

ˆ t

0

ˆ
Ω

∣∣∣∣(∂t + u0 · ∇)A1

(A0)2

∣∣∣∣2 +
ω(b+ d)

4b

ν

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)

(3.42)

and absorb the second term in (3.42) in the left hand side for ν small enough independently
of We (see the Gronwall inequality (3.18)). Moreover,∣∣∣∣∣ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

((
u− u0 −Weu1

)
· ∇A1

(A0)2

(
A−A0 −WeA1

))∣∣∣∣∣
≤ ω(b+ d)

4b

We2

ν

ˆ t

0

ˆ
Ω

∣∣∣∣∣
(
u− u0 −Weu1

)
· ∇A1

(A0)2

∣∣∣∣∣
2

+
ω(b+ d)

4b

ν

We2

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)
,

(3.43)

so that we absorb the second term in (3.43) in the left hand side of the Gronwall inequality,
and absorb the first one in the integral term

´ t
0 C(s)D(s)ds. The term

We
ω(b+ d)

2b

ˆ t

0

ˆ
Ω

Tr

(
u1 · ∇A1

(A0)2

(
A−A0 −WeA1

))
= O (We)

is put in the remainder. We handle the terms (3.41b) and (3.41c) similarly.
Finally, we conclude that the Gronwall inequality (3.18) on D is true:

D ≤ E(0) +

ˆ t

0
C(s)D(s)ds+O(We), (3.44)

We do not make the function s 7→ C(s) explicit. Note that it may depend on b, ω, u0, u1,
but not on We. Moreover, as stated above, it is positive, and locally bounded. Let T ∗ be
the supremum, which may be infinite, of the times T such that

sup
0≤t<T

ˆ t

0
C(s)ds <∞.

We infer from (3.44) that for all T > 0, for all 0 ≤ t < T ,

0 ≤ D(t) ≤ [E(0) +O (We)] exp

(
t+

ˆ t

0
C(s)ds

)
.

This, along with (3.22a) and (3.22b), implies the estimates (1.15) and finishes the proof of
Theorem 4.

3.3 Final remarks

On the Giesekus and PTT models In the paper [Mas11], N. Masmoudi addresses
the existence of weak solutions for two other systems, namely the Giesekus model and the
Phan-Thien and Tannes (PTT) model. These models are quite similar, so we just give
some indications for Giesekus’s. The non-dimensional equation on the stress tensor reads

∂tτ + u · ∇τ −∇uτ − τ (∇u)T + ατ2 +
1

We
τ =

2ω

We
D(u) (3.45)
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with α > 0. As usually, we can rewrite the equation (3.45) in terms of the positive definite
matrix A := I +We

ω τ :

∂tA+ u · ∇A−∇uA−A (∇u)T +
αω2

We2 (A− I)2 +
ω

We2 (A− I) = 0. (3.46)

Computing,

(∂t + u · ∇) (detA)
1
d = −αω

2

We2

1

d
(detA)

1
d Tr

(
A−1(A− I)2

)
− ω

We2

1

d
(detA)

1
d Tr

(
A−1(A− I)

)
≥ ω

We2 (detA)
1
d

(
Tr
(
A−1

)
d

− 1

)
≥ ω

We2

(
1− (detA)

1
d

)
,

we infer that the property detA ≥ 1 is propagated in time, so that TrA ≥ d i.e. Tr τ ≥ 0.
Assume now that detA0 ≥ 1. Then, we have the following free energy decay in time

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

2 We

ˆ
Ω

Tr τ(t, ·) +
ω

2 We

ˆ t

0

ˆ
Ω

(
α|τ |2 +

1

We
Tr τ

)
≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

2 We

ˆ
Ω

Tr τ0.

(3.47)

One immmediately deduces a L2 ((0, T )× Ω) bound on τ .
We formally see that τ (resp. A) tends to 2ωD

(
u0
)
(resp. I), when We → 0. To

address the asymptotics, one works with the entropy expressed in terms of A

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

2 We

ˆ
Ω

[TrA(t, ·)− d] +
ω2

2 We3

ˆ t

0

ˆ
Ω

[
αω|A− I |2 + TrA− d

]
≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

2 We

ˆ
Ω

(TrA0 − d) .

(3.48)

As in the FENE-P case, one builds corrector terms of u, A and τ . Evidently, u0 is the
solution of the Navier-Stokes system with no-slip boundary condition and initial data
equal to u0, A0 := I and τ0 := 2ωD

(
u0
)
. One derives a formula for the relative entropy

by expanding the free energy (3.48) around A0 + WeA1. The fundamental remark is that
A 7→ |A − I |2 is globally convex. The computations are far more simple than for the
FENE-P system and lead to the convergence in the relative entropy norm

sup
t∈[0,T ]

(
1

2

∥∥u− u0 −Weu1
∥∥2

L2(Ω)
+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇ (u− u0 −Weu1
)∥∥2

L2(Ω)

+
αω3

2 We3

ˆ t

0

∥∥A−A0 −WeA1
∥∥2

L2(Ω)

) 1
2

.

Further details are left to the reader.
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On the Oldroyd-B system For the Oldroyd-B system, the constitutive equation is
(3.45) with α = 0. As for the Giesekus model, the property detA0 ≥ 1 propagates in time
and implies Tr τ = 0. Instead of (3.47), we have

1

2

∥∥u(t, ·)
∥∥
L2(Ω)

+ (1− ω)

ˆ t

0

ˆ
Ω

∥∥∇u∥∥
L2(Ω)

+
ω

We

ˆ
Ω

Tr τ(t, ·) +
ω

We2

ˆ t

0

ˆ
Ω

Tr τ

≤ 1

2

∥∥u0

∥∥
L2(Ω)

+
ω

We

ˆ
Ω

Tr τ0,

so that we lack an a priori bound on τ in L2 ((0, T )× Ω). The Cauchy theory for weak
solutions of this system is lacunary. So is the analysis of the Newtonian limit (for an
Oldroyd-B system with a regularizing term, see the analysis of J. Barrett and S. Boyaval
[BB11]). We are not able to say anything on the limit, even on a formal level assuming the
existence of solutions. As the Oldroyd-B system is widely used in applications, despite its
inadequate prediction of some physical phenomena, these questions are challenging.

A A remark on the Newtonian limit for oscillating initial
data

This appendix is devoted to the proof of Proposition 1 bis. We assume that the initial data
τ0,n is strongly oscillating in n (not in We). In our setting (see below), these oscillations
introduce defect measures at the limit n → ∞. In order to handle these defect measures,
we need refined a priori bounds on the solutions of (1.1). Our analysis is close to the paper
[LM00] by P.-L. Lions and N. Masmoudi, where the existence of weak solutions is proved.

A.1 Further a priori bounds for the corotational system

We complement the bound (1.3) by carrying out Lp ((0, T ), Lq) estimates on the system
(1.1). In particular, these bounds are crucial for the Cauchy theory of weak solutions as
developed in [LM00].

The proof of such estimates is divided into two parts. First, assuming an Lp ((0, T ), Lq)
estimate on τ , we prove a control on the velocity using the momentum equation. Then,
using the equation on τ , we use a Gronwall lemma to show an Lp ((0, T ), Lq) estimate on
τ taking advantage of the estimate of the velocity in terms of τ .

A.1.1 An Lp ((0, T );Lq) control of the velocity field u through an Lp ((0, T );Lq)
estimate on τ

In order to estimate ∇u in Lp ((0, T );Lq), we decompose u in a sum u = u1 + u2 + u3,
where u1 and u2 are the unique solutions to the Stokes system

∂tu
i − ν∆ui +∇pi = f i

∇ · ui = 0
ui(0, ·) = 0

, (A.1)

with f1 := −u · ∇u, f2 := ∇ · τ , and where u3 is the unique solution to
∂tu

3 − ν∆u3 +∇p3 = 0
∇ · u3 = 0
u3(0, ·) = u0

. (A.2)
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As u0 belongs to Ip,q for 4 ≤ q <∞ and 1 < p ≤ q
q−1 ,∥∥∇u3

∥∥
Lp((0,T );Lq)

≤ C ‖u0‖Ip,q . (A.3)

The second term u2 can be estimated by applying the nonstationary version of Cattabriga’s
estimate given in [GGS93] (see corollary 4.2 and estimate (1.6)):∥∥∇u2

∥∥
Lp((0,T );Lq)

≤ C ‖τ‖Lp((0,T );Lq) . (A.4)

From (1.3), we conclude that u · ∇u is bounded in Lr ((0, T );Ls) for all 1 ≤ r ≤ 2 and
s = 2r

3r−2 . Hence, applying Theorem 2.8 from [GS91] and Sobolev’s injection theorem, we
get∥∥∇u1

∥∥
Lr((0,T );Ls?) ≤ C

∥∥∇2u1
∥∥
Lr((0,T );Ls)

≤ C ‖u · ∇u‖Lr((0,T );Ls) ≤ C [r, s, ‖u0‖L2 , ‖τ0‖L2 ]

with 1 < r ≤ 2 and s? = 2s
2−s = r

r−1 , so that∥∥∇u1
∥∥
L

q
q−1 ((0,T );Lq)

≤ C [‖u0‖L2 , ‖τ0‖L2 ] . (A.5)

From (A.3), (A.4) and (A.5) we conclude that

‖∇u‖
L

q
q−1 ((0,T );Lq)

≤ C ‖τ‖
L

q
q−1 ((0,T );Lq)

+ C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
, (A.6)

with constants uniform in T and We.

A.1.2 Extra Lp ((0, T );Lq) estimates on τ through a Gronwall estimate

Let us now estimate ‖τ‖Lp((0,T );Lq), for any 0 ≤ T ,

1 ≤ p ≤ q

q − 1
and 3 < q <∞. (A.7)

Testing the equation on τ against τ |τ |q−2 gives

1

q
∂t ‖τ‖qLq +

ˆ
R2

(u · ∇τ) : τ |τ |q−2 +

ˆ
R2

τW (u) · τ |τ |q−2−
ˆ
R2

W (u)τ : τ |τ |q−2 +
1

We
‖τ‖q

=
2ω

We

ˆ
R2

D(u) : τ |τ |q−2.

Yet, it follows from the incompressibility of the velocity fieldˆ
R2

(u · ∇τ) : τ |τ |q−2 =

ˆ
R2

uα (∂ατβγ) τβγ |τ |q−2

=

ˆ
R2

uα
1

q
∂α (|τ |q) =

ˆ
R2

∂α

(
uα
|τ |q

q

)
= 0,

and ˆ
R2

τW (u) : τ |τ |q−2 =

ˆ
R2

ταγW (u)γβταβ|τ |q−2

=
1

2

[ˆ
R2

ταγ∂γuβταβ|τ |q−2 −
ˆ
R2

ταγ∂γuβταβ|τ |q−2

]
= 0.

Therefore,

1

q
∂t ‖τ‖qLq +

1

We
‖τ‖qLq =

2ω

We

ˆ
R2

D(u) : τ |τ |q−2 ≤ 2ω

We
‖∇u‖Lq ‖τ‖q−1

Lq . (A.8)
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A.1.3 Gronwall Lemma related to τ

Letting Z := ‖τ‖qLq , it follows from (A.8),

1

q

∂tZ

Z
q−1
q

+
1

We
Z

1
q ≤ 2ω

We
‖∇u‖Lq ,

which rewrites
∂t

(
Z

1
q

)
+

1

We
Z

1
q ≤ 2ω

We
‖∇u‖Lq .

A Gronwall-type argument yields for all t > 0,

‖τ‖Lq (t) = Z
1
q (t) ≤ ‖τ‖Lq (0) exp

(
− t

We

)
+

2ω

We

ˆ t

0
‖∇u‖Lq (s) exp

(
s− t
We

)
ds. (A.9)

On the one hand, for all 0 < t ≤ T ,∥∥∥∥ˆ t

0
‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L∞(0,T )

≤ C We
1
q ‖∇u‖

L
q

q−1 ((0,T );Lq)

≤ C We
1
q ‖τ‖

L
q

q−1 ((0,T );Lq)
+ We

1
q C

[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
≤ C We

1
q T

q−1
q ‖τ‖L∞((0,T );Lq) + We

1
q C

[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
which implies for T1 sufficiently small

‖τ‖L∞((0,T1);Lq) ≤
1

1− 2ω
(
T1
We

) q
q−1

‖τ‖Lq (0) +
C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2

]
We

q−1
q

(
1− 2ω

(
T1
We

) q
q−1

) . (A.10)

The latter yields a local in time a priori estimate on τ and then on ∇u using the first part:
for all T > 0,

‖τ‖L∞((0,T );Lq(R2)) ≤ C
[
T,We, ‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
(A.11)

and

‖∇u‖
L

q
q−1 ((0,T );Lq(R2))

≤ C
[
T,We, ‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
. (A.12)

The explicit computation of the constants appearing in (A.11) and (A.12) is tedious. Note
that they blow up exponentially fast when T →∞ or We→ 0.

On the other hand,∥∥∥∥ˆ t

0
‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L1(0,T )

≤
ˆ T

0
‖∇u‖Lq (s)

ˆ T

s
exp

(
s− T
We

)
dtds

≤We ‖∇u‖L1((0,T );Lq)

and ∥∥∥∥ˆ t

0
‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L∞(0,T )

≤We ‖∇u‖L∞((0,T );Lq) ,

from which we get by interpolation∥∥∥∥ˆ t

0
‖∇u‖Lq (s) exp

(
s− t
We

)
ds

∥∥∥∥
L

q
q−1 (0,T )

≤We ‖∇u‖
L

q
q−1 ((0,T );Lq)

.
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Combining this last inequality with (A.9) yields

‖τ‖
L

q
q−1 ((0,T );Lq)

≤We
q−1
q ‖τ‖Lq (0) + 2ω ‖∇u‖

L
q

q−1 ((0,T );Lq)
,

and for ω sufficiently small, thanks to (A.6), a bound

‖τ‖
L

q
q−1 ((0,∞);Lq)

≤ C
[
‖u0‖L2 , ‖u0‖Ip,q , ‖τ0‖L2 , ‖τ0‖Lq

]
(A.13)

uniform in time and in We.

Remark 17. The singularity in 1/We
q−1
q in the estimate (A.10) prevents us from obtain-

ing a bound uniform in We in L∞loc ((0,∞);Lq). However, for fixed We, we can use this
bound. This explains why this bound is usefull for the proof of weak solutions, and not for
the low Weissenberg asymptotic analysis.

A.2 Newtonian limit with defect measures in the initial data

Let (un, τn) be a sequence of weak solutions to (1.1) associated to the initial conditions

un(0, ·) := u0,n(·), τn(0, ·) := τ0,n(·).

We assume that:

• The sequence (un, τn) satisfies (1.3) and the a priori bounds (A.11) and (A.12). Note
that the energy bound (1.3) bounds un (resp. τn) uniformly in n and We in the
spaces L2

(
(0,∞); Ḣ1

)
, L∞

(
(0,∞);L2

)
(resp. L2

(
(0,∞);L2

)
).

• u0,n converges strongly in L2 toward u0.

• τ0,n is uniformly equiintegrable in L2, i.e. that

sup
n

ˆ
|τ0,n|≥M

|τ0,n|2
M→∞−→ 0. (A.14)

In particular, we do not assume that τ0,n converges strongly in L2, which allows the presence
of defect measures initially.

A.2.1 Defect measures

We begin our analysis by making a change of unknown, underlining some special features
of (1.1) when d = 2. Following [CS12, equation (251)], let us introduce the new unknowns

an := τn,11 − τn,22, bn := τn,12, cn := τn,11 + τn,22.

We compute (dropping for the moment the subscripts n)

τW (u)−W (u)τ =

(
τ12 (∂2u1 − ∂1u2) 1

2 (τ11 − τ22) (∂1u2 − ∂2u1)
1
2 (τ11 − τ22) (∂1u2 − ∂2u1) τ12 (∂1u2 − ∂2u1)

)
.

Hence, the transport equation on τn becomes
∂tan + un · ∇an − 2bn curlun + an

We = 2ω
We (∂1un,1 − ∂2un,2)

∂tbn + un · ∇bn + 1
2an curlun + bn

We = ω
We (∂1un,2 + ∂2un,1)

∂tcn + un · ∇cn + cn
We = 0

(A.15)
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where curlun := ∂1un,2 − ∂2un,1. In particular cn is decoupled from an and bn. Of course,
the sequences (an), (bn) and (cn) inherit from the properties of (τn), and (an) (resp. (bn),
(cn)) satisfy the a priori bounds (1.3) and (A.11).

The presence of defect measures in the initial data means that

|a0,n|2
∗
⇀ |a0|2 + α0 L∞

(
(0, T );L

q
2
)
, (A.16a)

|b0,n|2
∗
⇀ |b0|2 + β0 L∞

(
(0, T );L

q
2
)
. (A.16b)

A way to quantify the possible loss of convergence in products of weakly converging se-
quences is to introduce defect measures. As

|an|2 is uniformly bounded in n in (u.b.) L∞
(
(0, T );L

q
2
)
,

|bn|2 u.b. in L∞
(
(0, T );L

q
2
)
,

an curlun u.b. in L
q

q−1
(
(0, T );L

q
2
)
,

bn curlun u.b. in L
q

q−1
(
(0, T );L

q
2
)
,

(∂1u1,n − ∂2u2,n) an u.b. in L
q

q−1
(
(0, T );L

q
2
)
,

(∂1u2,n + ∂2u1,n) bn u.b. in L2
(
(0, T );L

q
2
)
,

|∇un|2 u.b. in L1
(
(0,∞);L1

)
,

there exists α ∈ L∞loc
(
(0,∞);L

q
2

)
(resp. β ∈ L∞loc

(
(0,∞);L

q
2

)
, δ, ε, η, λ ∈ L

q
q−1

loc

(
(0,∞);L

q
2

)
,

µ ∈ [L∞ ((0,∞);L∞)]′) such that for all T > 0,

|an|2
∗
⇀ |a|2 + α L∞

(
(0, T );L

q
2
)
,

|bn|2
∗
⇀ |b|2 + β L∞

(
(0, T );L

q
2
)
,

an curlun ⇀ a curlu+ δ L
q

q−1
(
(0, T );L

q
2
)
,

bn curlun ⇀ b curlu+ ε L
q

q−1
(
(0, T );L

q
2
)
,

(∂1u1,n − ∂2u2,n) an ⇀
(
∂1u

1 − ∂2u
2
)
a+ η L

q
q−1
(
(0, T );L

q
2
)
,

(∂1u2,n + ∂2u1,n) bn ⇀
(
∂1u

2 + ∂2u
1
)
b+ λ L

q
q−1
(
(0, T );L

q
2
)
,

|∇un|2
∗
⇀ |∇u|2 + µ [L∞ ((0,∞);L∞)]′ .

Let us state a couple of straightforward properties on the defect measures:

• The measures α, β, µ are positive.

• For every bounded measurable set E ⊂ (0,∞)× R2,

|η(E)| ≤
√
µ(E)

√
α(E), |λ(E)| ≤

√
µ(E)

√
β(E),

|δ(E)| ≤
√
µ(E)

√
α(E), |ε(E)| ≤

√
µ(E)

√
β(E).

(A.17)

Moreover, testing the momentum equation against un then passing to the limit, and
passing to the limit in the momentum equation then testing against u yields an equality
between the terms appearing in the averaging process:

2(1− ω)µ+ η + 2λ = 0. (A.18)

Such an inequality implies in particular µ ∈ L2
loc

(
(0,∞);L

2q
q+2
)
.
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A.2.2 Weak convergence analysis

Our purpose is to pass to the limit on n, then on We. There are three steps:

1. We show the convergence of un (resp. τn) toward u (resp. τ), and pass to the weak
limit n→∞ in the system (1.1).

2. We pass to the limit n → ∞ in (1.3), in order to get a priori bounds on u and τ
uniform in We.

3. We study the limit We→ 0, as in the Section 2.1.

We will have recourse to the uniform equiintegrability of τn in L∞loc
(
(0,∞);L2

)
showed by

P.-L. Lions and N. Masmoudi in [LM00].

First step Classical arguments yield the existence of

u ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ ∈ L∞

(
(0,∞);L2

)
∩ L∞loc ((0,∞);Lq) ,

satisfying the energy inequality (1.3) with a right hand side slightly modified to account
for the fact that τ0,n does not converge to τ0 in L2. Passing to the limit n → ∞ in the
system (1.1) for (un, τn), we get that (u, τ) solves

∂tu+ u · ∇u− (1− ω)∆u+∇p = ∇ · τ
∇ · u = 0

∂tτ + u · ∇τ + τW (u)−W (u) τ +

(
−ε 1

2δ
−1

2δ ε

)
+ 1

Weτ = 2ω
WeD (u)

(A.19)

in the sense of distributions. We focus now on the low Weissenberg limit in (A.19).

Second step We intend to let n→∞ in the energy estimate

ω ‖un‖2L2 + 2ω(1− ω)

ˆ T

0
‖∇un‖2L2 +

We

2
‖τn‖2L2 +

ˆ T

0
‖τn‖2L2

= ω ‖u0,n‖2L2 +
We

2
‖τ0,n‖2L2 (A.20)

so as to retrieve bounds on the defect measures δ and ε uniform in We. Assuming no defect
measures initially (i.e. α0 = β0 = 0), we already know that (1.3) is satisfied at the limit.
Nevertheless, in the presence of defect measures, using the inequalities

‖u‖L∞((0,∞);L2) ≤ lim inf
n
‖un‖L∞((0,∞);L2) ,

‖∇u‖L2((0,∞);L2) ≤ lim inf
n
‖∇un‖L2((0,∞);L2) ,

‖τ‖L∞((0,∞);L2) ≤ lim inf
n
‖τn‖L∞((0,∞);L2) ,

‖τ‖L2((0,∞);L2) ≤ lim inf
n
‖τn‖L2((0,∞);L2) ,

is responsible for the loss of a lot of information. In particular, we lose all information on
the defect measures propagation.
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The heart of the matter is to justify the following formal limit n→∞ in (A.20)

ω ‖u‖2L2 + 2ω(1− ω)

ˆ T

0
‖∇u‖2L2 + 2ω(1− ω)

ˆ T

0

ˆ
R2

µ

+
We

2
‖τ‖2L2 +

We

4

ˆ
R2

(α+ 4β) +

ˆ T

0
‖τ‖2L2 +

1

2

ˆ T

0

ˆ
R2

(α+ 4β)

= ω ‖u0‖2L2 +
We

2
‖τ0‖2L2 +

We

4

ˆ
R2

(α0 + 4β0) . (A.21)

If the latter holds uniformly with respect to We, then we get uniform bounds on µ, α and
β in L1

(
(0,∞);L1

)
, and by (A.17)

|η| ≤ 1

2
(µ+ α) , |δ| ≤ 1

2
(µ+ α) ,

we bound η and δ uniformly in We in L1
(
(0,∞);L1

)
. The same holds of course for λ

and ε as well. In order to show (A.21), we need to prove that µ, α and β belong to
L1
loc

(
(0,∞);L1

)
. According to the results above,

α, β ∈ L∞
(

(0,∞), L
q
2

)
and µ ∈ L2

loc

(
(0,∞), L

q
2

)
(see (A.18)).

However, these bounds are not uniform in We, and do not imply a L1
loc

(
(0,∞);L1

)
bound.

Here a stronger result is needed on the sequence τn:

Result C (P.-L. Lions and N. Masmoudi). We assume (A.14), i.e. the uniform equiinte-
grability of τ0,n in L2. Then, τn is uniformly equiintegrable in L∞loc

(
(0,∞);L2

)
, i.e. for all

T > 0,

sup
t∈(0,T )

sup
n

ˆ
|τn|≥M

|τn|2
M→∞−→ 0. (A.22)

We refer to [LM00] Section III.3 for details concerning the proof. Let us point out the
main idea. It is to consider τn as a solution of the linear system{

∂tτn + u · ∇τn + τnW (u)−W (u)τn + 1
Weτn = 2ωD(u)

We
τn (0, ·) = τ0,n

with u fixed, which yields an affine mapping Ku : τ0,n 7−→ τn depending on u. Yet, Ku

satisfies estimates independent of u. For R an auxilliary parameter, one then decomposes
the initial data into

τ0,n = τ0,n1|τ0,n|<R + τ0,n1|τ0,n|≥R

and boundsˆ
|τn|≥M

|τn|2 ≤
ˆ
|τn|≥M

∣∣Ku

(
τ0,n1|τ0,n|<R

)∣∣2 +

ˆ
R2

∣∣Ku

(
τ0,n1|τ0,n|≥R

)∣∣2 .
The second integral is made small for R large thanks to (A.14). The first is small in the
limit M →∞. Note that up to this point, we do not take care on the dependence on We.

We deduce from (A.22), that

an curlun − a curlu, bn curlun − b curlu,

(∂1u1,n − ∂2u2,n) an − (∂1u1 − ∂2u2) a, (∂1u2,n + ∂2u1,n) bn − (∂1u2 + ∂2u1) b

are uniformly equiintegrable in L1
loc

(
(0,∞);L1

)
. Therefore, they converge weakly in

L1
loc

(
(0,∞);L1

)
, and their weak limits δ, ε, η and λ belong to L1

loc

(
(0,∞);L1

)
. The

defect measure µ is in L1
loc

(
(0,∞);L1

)
because of the equality (A.18).
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Final step We proceed exactly as in the Section 2.1: from (A.20) we get the existence
of

u0 ∈ L∞
(
(0,∞);L2,σ

)
∩ L2

(
(0,∞); Ḣ1

)
and τ0 ∈ L2

(
(0,∞);L2

)
,

such that convergences analogous to (2.1) hold. Passing to the limit We → 0 in (A.19)
leads to the fact that u0 satisfies the Navier-Stokes system (1.6) in the weak sense.

Remark 18. In order to pass to the limit in the energy equality (A.21), we assume more-
over that

√
We τ0 tends to zero in L2 and that We(α0 + 4β0) tends to zero in L1. Thus

passing to the limit, using the sign of the defect measures and the obtained weak conver-
gences, we recover the usual energy estimate for the Navier-Stokes system.
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