FIRST-ORDER EXPANSION FOR THE DIRICHLET EIGENVALUES
OF AN ELLIPTIC SYSTEM WITH OSCILLATING COEFFICIENTS

CHRISTOPHE PRANGE"

ABsTRACT. This paper is concerned with the homogenization of the Dirichlet eigenvalue
problem, posed in a bounded domain Q C R, for a vectorial elliptic operator —V-A%(-)V
with e-periodic coefficients. We analyse the asymptotics of the eigenvalues A*** when
¢ — 0, the mode k being fixed. A first-order asymptotic expansion is proved for \***
in the case when (2 is either a smooth uniformly convex domain, or a convex polygonal
domain with sides of slopes satisfying a small divisors assumption. Our results extend
those of Moskow and Vogelius in [I7] restricted to scalar operators and convex polygonal
domains with sides of rational slopes. We take advantage of the recent progress due
to Gérard-Varet and Masmoudi [11] 10] in the homogenization of boundary layer type
systems.

1. INTRODUCTION

This paper is devoted to the homogenization of the Dirichlet eigenvalue problem

(1.1) { -V A(f)Vvi = Af, €
v = 0, x € 00N

posed in a planar domain ) with periodic microstructure. Some reasons for the study of
the asymptotical behaviour of the eigenvalues when the period ¢ — 0 are expounded in
[20]. Among physical motivations is the analysis of low frequency vibrations in periodic
composite media. Significant progress in the direction of a better understanding of the
asymptotics of \* when € — 0 has been achieved first by Santosa and Vogelius in [20]
then by Moskow and Vogelius in [I7] under weaker assumptions. Our work extends the
results of [I7] to the case of elliptic systems and more general domains 2. Moreover, error
estimates have been improved.

Before entering into more details, let us state our mathematical framework. Let N € N,
N > 1. Throughout this paper, Q stands for a bounded open subset of R?, v* = v°(x) €
RY and A = A*?(y) € My(R) is a family of periodic functions of y € T? indexed by
1 < a, B < 2. Therefore, taking advantage of Einstein’s convention for summation:

(7-4(2)7) = n, (457 (20,05

All along these lines, C' > 0 denotes an arbitrary constant independant of €. The main
assumptions on A are:

(A1) ellipticity: there exists A > 0 such that for all £ = (51, 52) e RN xRY, for all
y € R?,
ALY £ S AP (y)e® - €F < ATIE g
(A2) periodicity: for all y € R?, for all h € Z2,
Ay + h) = A(y);
(A3) regularity: A is supposed to belong to C*°(R?);
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(A4) symmetry: forall 1 <o, <2, forall1<i,j <N, A%ﬁ = Afza

Unless otherwise specified, we always assume (A1), ..., (A4). In a very classical fashion,
boundedness of €2 and ellipticity of A imply, through Poincaré inequality and Lax Milgram
lemma, that the linear mapping

T¢: feL*Q)— uf € Hi(Q),

where u® is the unique weak solution of with r.h.s. equal to f, is well defined,
continuous and injective. If one composes T° with the compact injection of H{(€) in
L?(£2), one gets a compact operator, again denoted by 7¢, from L?(2) in itself. Assumption
(A4) tells that T is self-adjoint.

From the previous considerations, we know that our eigenvalue problem (1.1]) is well

. . k
posed. There exists a sequence of eigenvalues 0 < A9 < \&1 < \&F 2% 50 and a

hilbertian basis (v5F) of L?() of corresponding eigenvectors. To tackle the issue of the
asymptotical behaviour of (A%, v%) we deeply use the periodic structure of the problem at
microscale contained in (A2). We expand, at least formally, v® and A® in powers of €

(1.2) v (z) ~ o° <x, g) + ev! (93, g) + g20? (a:, g) +...
(1.3) A A Al 4202 4.

where for all i € N, v* = v(z,y) is periodic in the y € T? variable. Plugging (1.2) and
(1.3) in (1.1)) and identifying the powers of € yields that v" does not depend on y and that
(A%, 20) solves the homogenized eigenvalue problem

—V AW = A% zeQ
W= 0, x € 0N

As usual, the constant homogenized tensor A? = A%*8 ¢ My (R) in (1.4)) is given by
A¥ = /T AP (y)dy + /T A )0y, X" (y)dy,

where the family x = x7(y) € My (R), y € T?, solves the cell problem

(15)  — VAWV =0, A7 g T ad [ V=0

(1.4)

Note that A° fulfils assumptions (A1) and (A4), so there exists a sequence of eigenvalues

0 < A00 < AOL < A0k F2%% o and a hilbertian basis (vOF) of L?(Q) of corresponding
eigenvectors. Let T° denote the operator similar to ¢ with A? in place of A° := A (g)

1.1. What is at stake? Let us now focus on the convergence properties of the eigenvalues
MK when & — oo and the mode k is fixed. The first thing we know from [4], among other

papers, is that for all k € N,

1 1 o
(1.6) ’)\gk ~3oE| S |7 —T Hz:(L?(Q))
and that
Te e—0 TO

in £(L?(Q)) norm. Therefore, for all k € N,
)\E,k e—=0 )\O,k
no matter wether \* is simple or not. When N = 1, i.e. the system (I.1) is a scalar

equation, on condition that one has enough regularity on v%* (% € H?(Q) is sufficient)
so that an estimate like

(1.7) [o5F (@) = v%* (@) oy < Ce [0 2
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holds, one has in addition the error estimate
(1.8) Ak — X0k < Cpe.

Estimate (1.8)) is the starting point of the work of Moskow and Vogelius. Indeed, it leads
to natural questions, such that:

(1) What are the limit points of

ek _ 0,k
A A ?

(1.9) -

(2) Is there possibly one unique limit point?
(3) What is the next term in the asymptotic expansion?
When it does not lead to any confusion, we shall now omit the exponent k:

A° = XK (resp. A0 = \0F)
v =05 (resp. 00 = 00F).

In [I7], Moskow and Vogelius get an asymptotic formula for the eigenvalue A° of the
scalar equation (N = 1), valid up to the order 1 in ¢, provided that v* € H?(f2), which
is actually true for sufficiently smooth domains Q (convex or C? domains). They fully
describe the first-order corrections, i.e. the limit points of (1.9)), in the case when  is a
convex polygonal domain with sides of rational slopes. In this case there is a continuum
of accumulation points for ((1.9); an explicit description of the converging subsequences is
to be found in [I7], section 4.

Theorem 1.1 (Moskow and Vogelius in [17]). Assume that 2 is a convex polygonal domain
with sides of rational slopes and that N = 1. Assume furthermore that A0 is a simple
etgenvalue.

Then, for any sequence () tending to 0, there exists a subsequence, which we denote again
by (en), and a boundary layer corrector 93, € L*(2) solving an explicit homogenized elliptic
boundary value problem (see (3.6)), such that

(1.10) A= A0 g, N0 /Q 95 (x)0° (x)dz + o(e,,).

1.2. Difficulties and strategy. One faces essentially two kind of difficulties in proving a
first-order asymptotic expansion for the eigenvalues like : the first is linked with the
homogenization of boundary layer type systems, the second has to do with the regularity
of solutions to elliptic systems in nonsmooth domains like polygons. We sketch how these
difficulties are addressed by Moskow and Vogelius and how we extend their results to the
case of elliptic systems and more general polygonal or smooth domains €.

1.2.1. Homogenization of boundary layer systems. While 10 solves with a homoge-
neous Dirichlet boundary condition on 9, v! (-, i) does not cancel in general on 0f). For
this reason, the formal asymptotic expansion is inadequate to establish a first-order
expansion for the eigenvalues. Boundary layers need to be taken into account. Considering

v (z) =~ 00(x) + € [vl (x, g) + v;f(x)} + €2 [1)2 (30, g) + Uz?ig(x)} t+...
where véf solves

he _
(1.11) —V-A(f)val = 0, ' x €
v = —v'(x, %), xedn
proves to be more relevant than (1.2)). Moreover, ¥}, appearing in ((1.10)), comes from the
homogenization of an elliptic boundary layer system like (|1.11]).
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The heart of the proof of theorem [I.1|is subsequently the homogenization of boundary
layer type systems

—V-A(E)Vuil: 0, x €
(1.12) { : up = go(x, %), x € 082

with ¢ = ¢(z,y) := ®(y)wo(r), ® being, unless stated otherwise, a smooth function on T?
and ¢ € H%(GQ)
Compared to uf solution of

-V A(Q)Vu‘E = f, x€
(1.13) { ’ u® = o, x€ 0N

whose homogenization is now a classical topic, the analysis of the asymptotics of uf, when
€ — 0 is complicated by the oscillating boundary data in ([1.12)) for at least two reasons:

(1) We lack uniform a priori estimates for u§; in H'(2) norm. This is due to the fact
that

_1
o2 £)l13,00 = O 5)-

(2) The behaviour of the boundary layer along the boundary 92 deeply depends on
the interaction between the periodic lattice and the boundary. Thus one can not
expect in general periodicity of the boundary layer along the boundary.

The proofs of Moskow and Vogelius intensively rely on a result due to Avellaneda and
Lin, which addresses a priori estimates for elliptic equations in domains £ with quite low
regularity.

Theorem 1.2 (Avellaneda and Lin in [6] theorem 3). Assume that Q0 is Lipschitz and
satisfies a uniform exterior sphere condition. Assume furthermore that N = 1.
Then, for all 1 < p < oo, there exists C > 0 such that for all boundary data function

(p(.7 g) € LP(0R2), there is a solution uy, € LP(S2) of satisfying
(1.14) HUIEJZHLP(Q) < Clle(-?) HLp(aQ) :

Its usefulness for our boundary layer system (|1.12)) comes from the following simple
remark: Lp( i) is bounded in L2(99Q) norm, but not in H %(GQ) norm. Consequently,

Y
HuZlH L2(9) = O(1). An estimate similar to (1.14]) holds also for elliptic systems, yet under
stronger regularity assumptions on 2.

Theorem 1.3 (Avellaneda and Lin in [5] theorem 3). Let N be any positive integer.
Assume that Q is CV® with 0 < a < 1.
Then, the conclusion of theorem 1.3 remains true.

This theorem can be applied when € is smooth, but due to its strong regularity assump-
tion on ), it is useless in the case when 2 is a polygonal domain. A precise analysis of the
boundary layer system is needed in this case. Beyond the results of Avellaneda and Lin,
the analysis of has been carried out in the context of:

(1) convex polygonal domains €, first with edges of rational slopes by Moskow and
Vogelius in [I7], Allaire and Amar in [3] (scalar case), then with edges of slopes
satisfying a generic small divisors assumption by Gérard-Varet and Masmoudi in
[111;

(2) smooth domains with uniformly convex boundary by Gérard-Varet and Masmoudi
in the recent paper [10].

This recent progress in the homogenization of (1.12)), due to Gérard-Varet and Masmoudi,
opens the way to our generalizations.
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1.2.2. Regularity. Besides the issue of the homogenization of boundary layer systems comes
the problem of regularity. Regularity is required in order to carry out the energy estimates
of the paper. Of course this is only a problem when €2 is a polygonal domain; if €2 is
smooth, all functions we deal with belong to C*°(Q).

Assume now that €2 is a convex polygon. In the scalar case the results of Grisvard in [12]
(theorem 3.2.1.2) and [I3] (section 2.7), recalled in [17], yield that v° € H?(f2), because
of convexity. We even know better. Indeed v solves with r.hs. A% € HY(Q).
Therefore, v0 € H?>T%(Q), with 0 < w.

This H?** () regularity on v° appears to be the minimal regularity one has to assume
in order to get a first-order expansion like . It is a corollary of the work of Dauge
[8] on the one hand, and Kozlov, Maz’ya and Rossmann [I4] on the other hand, that the
results of Grisvard extend to systems with constant coefficients. More precisely:

Theorem 1.4. Let N > 1 and u® € H}(Q) be the unique solution of (L.4]) with r.h.s.
equal to f € H=Y1(Q). Assume that Q is a convex polygonal domain.

(1) If fe H 1 (Q) with0 <w < 1 and w # 5, then u® € HT¥(Q).
(2) If f € L3(Q), then u® € H?(R).
(3) If f € HY(Q), then there exists 0 < w < 1 such that u® € H?>T¥(Q).

Let us give a sketch of how to deduce such regularity statements from [8] and [14] (see
these references for more details). We know from [8] (see lemma 5.7) that for all s > 0, for
all vertex x € 0N

{0 < Re(A) < s} NSp L, is finite,
where Sp £, denotes the spectrum of a pencil associated to our problem at vertex z.
Besides, Kozlov, Maz’ya and Rossmann prove in [14], theorem 8.6.2, that for strongly
elliptic systems, with constant coefficients, satisfying the symmetry assumption (A4),
posed in the convex polygonal domain €2,

{0<Re(N\) <1}NSpL, =92

for all vertex x. This fact collapses if €2 has at least one angle > w. Yet ) being polygonal
and convex, it follows from [§], in particular paragraph 7.16, corollary 5.16 and theorem
5.5, that the operator

L we HHQ) N HY Q) — V- A(g)VU e HL(Q)

is a Fredholm operator for all 0 < s # 1 satisfying {Re()\) = s} N Sp £, = @ for all vertex
x € 0Q. At this point, one deduces that L(®) is a Fredholm operator for all 0 < s < 1,
s # % Moreover, there exists 0 < w < 1 such that L+ is a Fredholm operator.

Let 0 < s such that L) is a Fredholm operator and let f € H*~1(2). Two situations
are possible. If there is a vertex z € 09 and A € {0 < Re(\) < s} N Sp L, then theorem
5.11 in [§] yields the existence of u),, € H'™5(Q), the regular part, and u,,, € H'*7(),
the singular part, with 0 <y < minye(o<Re(\)<s}NU, Sp La Re(M), such that

uO = uging + ugeg € HH_’Y(Q)'
On the contrary, if for all vertex z, {0 < Re(\) < s} NSp L, = &, then v = ugeg is in
H'5(Q). The two first points of theorem as well as the third now easily follow from
the preceding results.

Each point of theorem plays a role in our reasoning. One can alternatively invoke

weaker regularity results such as:

Theorem 1.5 (Agranovich in [2] theorem 1). Assume that ) is a Lipschitz domain. Let
u® € H}(Q) be the unique variational solution of (L)) with r.h.s. equal to f € H™1().
5



Assume furthermore that f € H-1(Q) with 0 < w < £.
Then, uf € HIT%(Q).

1.3. Outline of our results. This article answers relevant questions asked by Moskow
and Vogelius. Quoting [17] (section 5):

It should be extremely interesting to derive a similar representation formula
for polygons with sides of irrational slopes or for smooth domains. In
particular, it would be interesting to see if this leads to a single first-order
correction for any eigenvalue.

We manage to free ourselves from the assumption N = 1. Our main results then sum
up in the upcoming theorems. We treat separately two different classes of domains 2: on
the one hand very smooth domains, on the other hand convex polygonal domains. All the
definitions we use are made rigourous later in the paper.

Assume that A\” is an eigenvalue of order m. Let A0 = X0k = \0A+1 — = — \Oktm—1 1,0
the eigenvalues repeated with multiplicity. We call Fyo the finite-dimensional eigenspace
associated to the eigenvalue A°. Note that the eigenvectors v%* ... v®F+™=1 form an
orthogonal basis of Eyo.

Our first theorem is concerned with smooth domains €.

Theorem 1.6. Assume that Q is a smooth C*° bounded domain with uniformly convez
boundary.
Then, for every 0 < j < m — 1, there exists a unique ﬁ;’bl € L*(Q) such that for all
0<~<4,

-1

m—1 m—1
1 1 A0 . ,
(115) % E W = )\0 + 5% E /Q j,bl(x) . Uo’k+j (iE)d.’L' + 0(51—"_7).
=0 =0

The next theorem faces the same problem for convex polygonal domains §2.

Theorem 1.7. Assume that Q) is a convex polygonal domain with sides of slopes satisfying
a generic small divisors assumption; see section |3.4

(1) Then for every 0 < j < m — 1, there exists a unique Vin € L?(Q) and 0 < vy such
that

1 m—1 1 ! )\0 m—1 '
(1.16) - > | = A0+ e > /Q 9% () - v (z)da + O (e117).
j=0 =0

(2) If Exo C H3(Q) N C?(Q), then for every 0 < j < m — 1, there exists a unique
Vin € L%(Q) such that

1 1 1
1 mz’ 1 p i . , s
(117) E W = )\0 + 8% E Aﬁj’bl(x) . ’Uo’k+J (.Z')dl' + 0(52).

We stress that theorem has two parts. The first point is a general result: due to
the assumptions on A (in particular (A1) and (A4)) and on Q (polygonal and convex),
the H*t¥(Q) regularity, with 0 < w, needed on the eigenvectors for the proof, happens
to be automatically fulfilled. The second part of the theorem states an optimal result in
view of our proof, in terms of convergence rate, but needs to assume more regularity on
the eigenfunctions.

There is an analog of theorem in the case of a convex polygon with sides of rational

slopes, which improves theorem . Estimate (1.16]) (resp. (1.17))) still holds however up
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to the extraction of a subsequence (g,,). Throughout the paper, we indicate how to adapt
the proofs to this case.
When A° is simple, (1.15)), (1.16]) and (1.17) yield the first-order expansion

A =2\0 ¢ 5)\0/ Oy (2)0" (z)dz + o(e17).
Q

valid for appropriate exponents .

A consequence of these two theorems [I.6] and [I.7] is that the first-order correction to
the eigenvalue \° is identified and unique. Furthermore, it appears in the course of the
proof of theorem that 19;‘7“ is a solution of an homogenized elliptic boundary value
problem (see , whose data can be made explicit. It thus opens the door to numerical
computations. We expand this point in the section indicate how to compute the data
of the homogenized boundary layer problem, and refer to numerical studies.

1.4. Organization of the paper. In section [2] we prove some corrector results for u®
solution of . Such estimates do exist in the litterature, but we focus on minimal
regularity assumptions. In particular, we extend the bounds of [I7] to elliptic systems
(non necessarily symmetric) and get new ones, which are useful in the rest of the paper.
Section (3| is devoted to the homogenization of boundary layer type systems. We analyse
the convergence in L?(Q) of U5, solution of with ¢(x,7) := —x“(y)0x,v°(x), in the
two different settings: €2 is a smooth domain with uniformly convex boundary or a convex
polygonal domain with the additional diophantine condition on the slopes. This work is
the central step in the proof of theorems [I.6] and [I.7} The final step is done in section [4]
where a first-order correction formula for A°, in terms of the limit of 9 ,; when ¢ — 0, is
obtained. 7

2. SOME ERROR ESTIMATES
Let f € H1(Q) and ¢p € H%((?Q) The solution u® of

(2.1) V. A(%)Vu": = f, x2€Q
u® = g, x€ 0N

exists, is unique in H'(£2) and converges strongly in L?(Q) towards u® € H'(Q) solving

the elliptic system

v . A0, 0 —
2.2) { VAV = f, 2€Q

u = g, x €N

We focus here on estimates in norm showing how fast this convergence takes place. We do
not need assumption (A4), i.e. the symmetry of A.

2.1. Multiscale expansions. Before coming to the estimates, let us recall some basic
facts about multiscale expansions. In the same fashion as v® (see (|1.2))), we expand u®:

(2.3) uf (z) ~ u’ (:c, E) + eul <:c, E) + 242 (az, f) +...
€ € €
Plugging (2.3) in (2.1) and identifying the powers of € yields, at least formally,

(1) that u° solves the homogenized system

V- AV = f, zeQ
u’ = ¢y, €N’

(2) that u!' = ul(z,y) = x*(y)0s,u’(z) + @' (x) where x* is the function defined in

3.
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(3) and that u? = u?(z,y) = I'*F(y)0s, Os,u’(x) + X*(¥) Oz, i (x) + u?(x) where [
solves

-, AWV =B - [ Bdy et and [ Ty =0
T2 T2
with
B = A% + A9, X" + 0, (A7*\P).

We always assume that @' = @° = 0.
The first-order correction u! (-, g) to u® does not satisfy homogeneous Dirichlet boundary

conditions on 0. It is therefore responsible for a O (%) term in the H'({2) estimates

involving u!. In order to correct this, one introduces a boundary layer function 95

solution of (1.12) with ¢(z,y) := —u'(z,y) = —x*(y)0z,u’(x). Note that u' (-, 2) + U5 b
belongs to H} ().

2.2. Error estimates. We extend here the estimates of Moskow and Vogelius (cf. [17]
section 2) to systems.

Proposition 2.1. Assume that u® € H?(Q).
Then

(2.4) |u (2) — u°(z) — eu (z, %) — 5193,1)1(:5)“1{1(9) < Ce HUOHHQ(Q)
for C > 0 independent of ¢ and u°.

The proof relies on energy estimates on the error
e i=uf(z) —u'(z) — eu! (z, E) — el ().
E b}

It is a solution of the following system

. (T
where
(2.6) P =4V {A(Z)VUO] +ev- [A(Z)Vul (w ":)]

We intend to prove that the H'(Q2) norm of e° is of order £ by showing that the source
term r° in is of order € in H~!(€). It is not clear, looking at (2.6)), that the latter
is true. To face this issue, we invoke the classic key lemma, which can be proved using
Fourier series expansions:

U1

Lemma 2.2. Letv = (
()

) € C>(T?; R?).

Assume

V.v=0 and /v:().
’]I‘Z

Then there exists 1) = 1(y) € R such that v = V1) = (7963;/’)
1
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Proof of proposition 2.1 Expanding the source term 7° yields
(2 7)

= [0 AT (5. 2) + [9- ATl (=)
+f+ [V - A(y)Vau }( x, ) + [Vm . A(y)Vyul} (:U, g) + [Vy . A(y)unl} (:v, g)
+2|Ve- AWV | (2. 2).
The leading idea is to get rid of terms of order 0 and —1 in &. We call
v = A(y)Vyu + A(y)V,u®
and notice that
Vy-v=V, Aly)Vu' +V, - A(y)V,u'(z,y)
= 0y, A% ()00, 0" + Oya (AP (4)Dys X" (y)) Dr,

(2.8) =0

because 7 solves (1.5)). Thus the =1 order term in (2.7)) cancels and it remains to handle
the zeroth order term:

29) f+ Vo AVl | (2, 2) + [Vo- ATyt | (2, 2) + [V, - A V] (2, 2)
=f+ [Va; . v} (x, g) + [Vy . A(y)Va;ul} (x, g)
Here again, we take advantage of and the definition of A%: on the one hand
Vy - (v — AOVuO) =0
and on the other hand
/11-2 (v— AOVuO) =0.

It follows that one can apply lemma component by component, and get a function
¥ = 1p(z,y) € RY such that

v— AV = Vji/)

Due to the fact that v — A°Vu? is a function of separated variables x and y, v itself is and
factors into

(2.10) U(z,y) = U(y) V' (2).
The function ¥ = (¥* (y))l oy EM ~(R)? is given by the lemma and is therefore of class
C>. As u? is assumed to be in H?(f2), 1 is in H'(Q) with respect to x. We set

w =V
of regularity L?(Q) towards z, we compute
Vy w=Vy -Vytp=-Vy - Vyp=-Vo-v—f
and use this equality to simplify

(2.11) f+ [Vm . v} (:L‘, g) + [Vy . A(y)qul} (a:, g) =— [Vy . w] (x, g)

+ [Vy . A(y)qul} (az, g)



Finally, using V, - w = 0 one obtains

[T 2) v [a(E) T ()]
S (CORE AR (CORRR N DM (S
212 =9 fu(n?) | ev- [a(2) ()]

It remains to estimate the H () norm of 7. The expression (2.12) is convenient for
two reasons: it is a sum of two terms of order 1 in € and is written in divergence form.
Moreover, w(~, g) as well as A(Q)Vmu ( ) belong to L?(Q) and we have

Jw (- 2) HL2(Q) S CHUOHHQ(Q)
[AG) Vaul (5 ) 20 < C Wiz

Consequently, for all ¢ € H}(2), by Cauchy-Schwarz inequality

<r€ (x’ g) ’ ¢(x)>H1(Q),H3(Q)
| 2] o i ),
€/Qw<x, g) -Vo(z)dr — £/QA<§>V$U1 (a:, g) -Vo(x)dx

< Ce [[w|] oy 19| 113 0

which concludes the proof. O
Corollary 2.3. Assume that u® € H?().
Then
1
(2.13) [|uf(z) — uo(:c)HL2(Q) < Cez HUOHHQ(Q) .

Proof. By the triangular inequality, we get

[Ju (z) — “O(x)HH(Q)
< [vf(@) — () —eul (e, 2) - 8”in,bl(gc)HHl(Q) telut (@ 2) | 2oy +e Hﬁi,bl(w)Hm(Q)

The estimate (2.13) now follows from (2.4)), the uniform boundedness of u' (-, 2) in L?(Q)
and from the bound

_1
(2.14) |75, blHL2(Q 195, blHHl(Q) < C|[x*(£) 0w, (x)HH%(aQ) <Cez HuOHHQ(Q) O

From corollary E one easily gets a similar L2(Q) estimate under weaker assumptions
0
on u’.

Corollary 2.4. Assume that u® € H'™9(Q), with 0 < w < 1.

Then

(2.15) [ (2) = w®(@)]| 2 < C=2 00| 10 -

Proof. A straightforward energy estimate on the elliptic system satisfied by u® — u° yields
(2.16) [ (2) = ()| 2y < Ol (@) = (@)]| ) < C N1 11
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Inequality (2.15) now comes from interpolating (2.16)) and (2.13). The main idea is to
think of (2.16)) (resp. (2.13) as the statement that the linear operator

ud — uf(z) — u®(z)
is bounded from H'(Q) to L?(2) (resp. from H?(2) to L?(2)) and then to interpolate. [

We call now ﬁiil the solution of (1.12) with ¢(z,y) := —u?(x,y), whose introduction is
motivated by the same reasons as ¥ ;,, and state the proposition:

Proposition 2.5. Assume that u® € H3(1).
Then

0 1 z 3 0
(2.17) |u (2) — u°(z) — eu (z, %) — 61927bl(x)“L2(Q) < Ce? ||u HHg(Q) .
Proof. The proof of ([2.17)) relies on a global energy estimate found in [I1], section 3.3:
= 0(52)

ve

(2.18) ‘

(@) = (@) — el (@, £) = ety (o) — < (a, 2) — A5 @) |

It requires u’ € H3(£2) and it can be showned using the same ideas than those involved in
(2.4), the key being again lemma [2.2] Following the lines of [I1] it becomes clear that the
precised estimate

holds. It is nothing but a consequence of the way the involved functions factor in the
product of a function depending only on y and of Vu (cf. (2.10)). We conclude, applying
the triangular inequality, that

< Ce? Hu

w(e) — (@) — eul (z, 2) = 0 @) — (e, 2) - 2|, 550

Hua(fn) —ul(z) — eu! (1‘, %) - gﬁz,bl(x)um(g)
< ‘ us(x) — u0<x) —eul (m, %) — fﬁi,bl(x) — 292 (a;, %) — 52195”21(33)"1{1(9)
e 2@ 9) gy + 2 [

The estimate (2.17)) now follows from (2.18)), the uniform boundedness of u? (', g) in L2(Q)
and the (2.14))-like bound
‘ 9

We conclude this section focusing on a ([2.17))-like estimate for u° satisfying a weaker
assumption.

2.
u,bl

< e ] -
H(Q) — H3(Q) "

Theorem 2.6. Assume v’ € H*(Q), with 0 < w < 1.
Then
(2.19) |uf (z) — u'(z) — eul (2, Z) — 5192717[(90)‘&2(9) < Ce'5 ||u

- a2y -

As in the proof of corollary estimate (2.4]) (resp. (2.17)) states that the linear
operator
u — uf(z) — u¥(z) — el (2, g) — vy, ()
is bounded from H?(2) to L(Q) (resp. from H3(2) to L?(Q2)). By interpolating between
the two linear operators, one gets (2.19)). All details can be found in [17] and apply without

any change to the case N > 1.
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3. HOMOGENIZATION OF BOUNDARY LAYER TYPE SYSTEMS

Throughout this section we are interested in the homogenization of the boundary layer
type system

51) {—Vqﬂ@V%M: 0, ren

Vo= —X(£)0,u’(z), x€dQ

that is in the study of the asymptotic behaviour of the sequence 792131 when ¢ tends to 0.
This means we both look for a possible limit of the sequence and for estimates in norm
of the speed of convergence. For all this section, we assume that u° solves , with
f € L*(Q) and ¢y = 0.

This is a crucial step in the proof of theorems and As explained in the introduc-
tion, there is no regularity issue when €2 is smooth. On the contrary, when (2 is a polygon,
we concentrate on minimal regularity. That is why we give two convergence rates: the
first under the minimal assumption v € H?T%(Q) with 0 < w < 1, the second under the
stronger regularity assumption u® € H3(2) N C%(Q), where we focus on improving the
speed of convergence.

For notational convenience, let us write in this section U5, instead of U7 ;.

3.1. Smooth uniformly convex domains. Assume that Q C R? is a smooth (say C™)
uniformly convex domain i.e. all principal curvatures are bounded from below; see [7]
section III.7 for another definition. The regularizing properties of elliptic operators in
smooth domains yield that u® € C>°(Q2) (see [I] theorem 10.5). Therefore, the boundary
data function o(z,y) = —u'(z,y) = —x*(y)0x,u’(x) is a smooth function. Note that we
do not need assumption (A4), i.e. the symmetry of A.

Theorem 3.1 (Gérard-Varet and Masmoudi in [I0]). For all 1 < p < oo there exists
©* € LP(09Q) such that U5, converges in L*(Y) towards 95, € LP(Q) solution of

-V AOVﬁZZ = 0, x €
= ¢ (x), =€
Moreover, for all 0 < v < ﬁ,
(3.2) |95 —

ZZHL2(Q) =0(7).

We do not attempt to weaken the regularity assumption on €2, which itself implies strong
regularity on u®. For details concerning the proof and relevant remarks, we refer to [10].

3.2. Convex polygonal domains. Let us assume €2 to be a bounded convex polygonal
domain with M edges, supported by the lines K* of unitary inward normal n* € S*. Thus

M
Q= ﬂ{x, nk~m>ck}
k=1

with ¢* € R, and for all 1 < k < M,
KF = {x, nk .= ck}.
Beyond this first assumption on ) we require either
(RAT) rationality: for all 1 <k < M,
(3.3) nk € RQ?

or
12



(DIV) small divisors: there exists C, [ > 0 such that for all 1 <k < M,
(34) V= (€,6) €22\ {0}, [P, (9)] = Clgl™

where P ;1 is the orthogonal projector on nk.

As Q C R?, condition (3.4) boils down to
(3.5) ve e 22\ {0},  |n*-¢ > Ol

where nF . ¢ .= n’f& + né@. Note that a vector n € R? cannot satisfy both and
or (33).

Keeping in mind that 9}, solves (3.1)), one has the following convergence theorems. Note
that as soon as we invoke the regularity theorem in the proofs, we need the symmetry
assumption (A4) on A.

Theorem 3.2. Assume ) satisfies (RAT). Assume furthermore that u® € H?>T%(Q) with
0<w<1 (resp. v’ € H3(Q)NC%Q)).

Then for any sequence (gy,) tending to 0, there exists a subsequence, which we denote again
by (en), and (VF*)1<panr € My (R)?M such that ¥, solution of converges in

1<a<2
L%(Q) towards 93, solution of
(3.6) -V AV = 0, x €N
' 5 = —Vkerg, «Oz), z€dQNK* foralll<k<M ~

Moreover, we have the following convergence rates:
(1) if u® € H*T(Q), then there exists 0 < v < % such that

|05 — ﬂZlHH(Q) =0(e});
(2) if u® € H3(Q) N C2%(Q), then
1
195 = Oll 122y = O(ER)-

Theorem 3.3. Assume Q satisfies (DIV). Assume furthermore that u® € H?>T%(Q) with
0<w<1 (resp. u® € H3(Q)NC?*(Q)).
Then there ezists (VF*)cp<pr € My (@R)>M such that v, solution of (1.12) converges

<a<2
in L*(Q) towards 93, solution of
57) —V A = 0, TEQ
' 9 = —Vkerg, WOz), z€IQNKF, foralll<k<M °

Moreover, we have the following convergence rates:

(1) if u® € H**¥(Q), then there exists 0 <y < % such that
(3.8) 195 = D5l 2y = O(€7);

(2) if u’ € H3(2) N C?(RY), then
(3.9) 195 = 9l 20y = O(c?).

The only, but major, difference between theorem [3.2]and [3.3]is that, in the small divisors
case, convergence holds for the whole sequence, whereas in the rational case, convergence
takes place up to the extraction of a subsequence (&,), the constant matrices V*®* de-
pending on (&,,).

13



3.3. How to compute the limit? The homogenized boundary layer corrector 9}, solving
(3.7) can be computed as soon as one is able to make explicit the boundary layer tails
VEe* e My (R). Let us shortly review the different settings:

RAT: The boundary layer tail V*%* depends on the subsequence (en). However,
given a subsequence (e,,) such that ¥;; converges, Moskow and Vogelius show
an explicit formula for the boundary layer tail when N = 1: see formulae (4.6)
and (4.7) in [I7]. Their proofs in appendix 6 (propositions 6.3 and 6.6) rely on
the periodic setting and on the fact that the equations are scalar. Numerical
investigations have been carried out by Sarkis and Versieux in [22] 21] using these
formulae to compute the boundary layer tails in the case when 2 is a square.

DIV: The boundary layer tail is shown to be unique (see theorem below and the
article [11]). The formulae of Moskow and Vogelius have been recently extended
by the author to arbitrary polygons and arbitrary N > 1: see formula (6.4) in [19].

smooth: In [10], Gérard-Varet and Masmoudi build the boundary data ¢* as a
functional ¢*(z) = A(p(z,-), A(-),n(x)), where n(z) is the inward normal to the
boundary at z € 0{2. In section 3 therein, ¢* is constructed almost everywhere
on 05, at the points where n(x) satisfies the (DIV) assumption. This suggests to
address the numerics by approximating the boundary by a polygonal with edges
satifying the (DIV) assumption.

3.4. Proof of theorem The proofs of theorems [3.2] and [3:3] follow the same steps.
They differ mainly in one intermediate result, which explains why in the rational case, the
convergence result is true only up to the extraction of a subsequence. Although we focus
on the (DIV) assumption, we underline the difference with assumption (RAT).

3.4.1. Ezxistence of the boundary layer tails. Let us show the existence of the matrices
Vkex Tet1<k<Mand1<a<2 We are interested in the boundary layer profile in

the vicinity of vertex k. Thus, introduce v{fl’a’a solution of
(3.10) —Vy- A(y)vyvfia’g = 0, y € QFe
| vt = X (y), y € o0k

where QF¢ .= {y, nk .y — % > 0}. Let M* € Ms(R) be an orthogonal matrix, mapping
€9 1= <(1)> to nk.
The following theorem describes the profile of V¢ := UZ’Q’E(M’“-).

Theorem 3.4 (Gérard-Varet and Masmoudi in [I1]). Assume that Q satisfies (DIV).
Then,

(1) for all € > 0, there exists Vs € C™ (R X [%, ooD ;
(2) there exists a matriz
(3.11) VRer ¢ My(R)

such that for all B € N2, for all m € N, there is a constant Clglm > 0 satisfying
for alle >0 and z > %,

k
(3.12) (1 + ’ZQ _¢

m
) sup ’8? (V"“"a’a(zl, z9) — Vk"’"*)
z1€R

< Cg|m-

14



Remark 3.5. Note that (3.12)) is true not only for m € N but for m € R, m > 0. Indeed,
[m] denoting the integer part of m, we have

1
P o (Mt . ok
29 — — < |z9g — — ,lf 29— —| >1
g
Ckm k
zZ9 — — Sl,lf 22——§1.
€ e

Remark 3.6. If we rewrite the second statement of theorem in terms of v,’fl’a’a instead
of VFe we get: for all B € N2, for all m € N, there is a constant Clg,m > 0 satisfying for
all e > 0 and y € QF°,

(3.13) (1 + ’y .nk = %

™) 0§ ute () — Vi) <

Remark 3.7. If instead of (DIV) we assume (RAT), the boundary layer tails V% still
exist. Furthermore, an equivalent of theorem |3.4| states: there exists a sequence (e,,) (here
lies the main difference between the two assumptions), a constant matrix V** € My (R)

such that for all m € N, for all z9 > %7

m
(1 + ‘22 - si‘ ) sup ‘85 (VF@en (2, 29) — VEr)
" z1€ER

< Clglym-

The latter is sufficient to get our results. However, Moskow and Vogelius in [I7], as well
as Allaire and Amar in 3] manage to prove an improved result under assumption (RAT):
the convergence of the boundary layer towards its tail is exponential.

Assume from now on that Q satisfies (DIV). Let 0 < w < 1 be fixred. The assumptions
u’ € H*T(Q) with 0 < w < 1 andﬁo € H3(2) N C?(Q) are treated in parallel. In both
cases, by Sobolev injection, u® € C1(Q).

3.4.2. Well-posedness of (3.7). It is enough to prove that the boundary function of (3.7))
belongs to H%(ﬁﬁ) One constructs a lifting ¢;; of ¢}, := —V**9, u°(x). There exists
G = (G',G?) € My(R) x My(R) such that

(3.14) o5 = GOy u°.
Following [11], one can show:

Proposition 3.8. Ifu® € H*(Q), then ¢}, € H(Q). If u®, in addition, belongs to H3(Q),
then ¢}, belongs to H?(Q).

3.4.3. Sketch of the proof of the estimates (3.8) and (3.9). Our strategy is to split the
problem of estimating ¥, — 1}, into three easier ones. For this purpose, we introduce 2921’*
solution of
V. A(Z ek _
(3.15) \Y A(E)w,gl* 0 req )
0, = VPO, ud(x), ve€dQNKY, foralll1<k< M

to get via the triangular inequality:
195 = Viall 2y < 1957 = F5ill Loy + 195 = 93" [l 2y -

Note that 9;;" is well defined because of proposition
The study of the first term seems to be more classic as the boundary data function
of and is not oscillating. The second term, on the contrary, requires a deep
knowledge about the homogenization of boundary layer systems.
15



In fact 9§, — 95} is the solution of (T.12) with ¢(z,y) = —(x*(y) — VF**)0,,u’(z),
for all z € 09 N K*, for all y € R?; we call uéf the difference 95, — 1922*. It comes from
proposition |3.8| that ¢ defined like this is in H %(89) Let

(3.16) T (A (S I AN

where vbl € is defined by (3.10]), and its tail V** by theorem (see (3.11])). We expect
ubl to be close to S0 oy (4 2):

(I HL2 <2H”bl 7, %) +H“bz () = Spl, v (2, 2)

The rest of the proof is thus devoted to estimate each of the terms in the r.h.s. of:

2(Q) L2(Q)

(317) 95—Vl pagey < 195" - ﬂzluywzuvbl @) e

+Hubl Sy 1”bz (o, 2)

3.4.4. First term in the r.h.s of . We resort to corollary to estimate this term.
In order to get some convergence rate, we need to have a little more regularity on 9;; than
Uy € H 1(Q). According to proposition the lifting ¢, of the boundary data of
belongs to H!T¥(Q) (resp. H%()), provided that u° belongs to H2t¥(Q) (resp. H3(Q2)).

Let us treat the two assumptions on u” separately. If u® € H2T¥(Q), it follows from the
first point of theorem that 97, has H 7(Q) regularity for all v such that 0 < v < w
and v # % Therefore,

L2(9)

* * X
[ ﬁblHL?(Q) =0(e?).
If u® € H3(Q), the second point of theoremyields that J;; € H2(2). Applying corollary
implies
. 1
[ 19blHL2(Q) =0(e2).
3.4.5. Second term in the r.h.s of (3.17)). By linearity of the equations, the boundary layer
: k., * ke :
tail V**(z) of v;;"(z,-) is equal to
V() = VP9, uO(z) + VEY* 9, uO(z) = 0.

We deduce from theorem [3:4} for all m € N, there is a constant Cy,, > 0 such that for all
e >0, for all x € Q,

o n =N e
(3.18) <1+ o >’vbl (z,2)] <

The uniformity in = comes from the fact u’ € C!(Q) and from the boundedness of Q.

m-

Proposition 3.9. For all1 < k < M, ‘Ubl (z,2) = O(E%), where we racall that
e/lL2(q)
vbl’g is defined by (13.16)).
Proof. Let m € N. From we get
2
k,e
el =

SC’/~<m>2du
8 (1+%
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where Q :=0M*Q — (;) Therefore, we have to focus on

1

1
——duy = 52m/ ——dus.
/[o,oo[ (1 + ;LZ)Z 0,00 (™ + u?)?

For 2m > 1 the integral is convergent and

/ L dw< / - +/ o duy = 072
0,00 (g™ + uf) 0] € le00] U3"

We immediately deduce that
2

= 0(e)

k,e
which yields the result. N

Remark 3.10. It is easy to adapt the proof of proposition to get: for all 1 < k < M,
1
for all 1 < p < o0, vllfl’s(x,f) o) O(e?). For p = oo it is (B.18) with m = 0; for
D
1 < p < oo the proof follows the lines of the case p = 2, except that one has to replace

2 by p. In the same manner, it is very straightforward to deduce from (3.13)) that for all
1 <p<oo, forall g &N for all m € N,

z-nk—ck|™
(3.19) Haﬂ@{jﬁe(e) V’Wv*)7| il ‘

1
= 0(c7).
iy~ CE)

3.4.6. Third term in the r.h.s of (3.17). We proceed as usual by carrying out energy
estimates on the error

M -

g .__ 1,8 kE

ey =y (T) — ) vy (:L', g>,
k=1

where we recall that vfl’a is defined by (3.16]). The error solves the system

-V A(f)Veil = 1y, €
ey = 5, T €N

where the source term

M
(3.20) re = Z{v - (A(:)va{jf <m i)) + é [Vm : A(y)Vyvff} (f'f i)}

k=1

and the piecewise defined boundary function
M M
(3:21) @hlagnir = _<Xa (g) _Vk’a’*> Dpo ()= Y vy ° (337 g) == > (33> g)
k'=1 k' #k
We estimate separately 75, (cf. lemma and ¢p; (cf. lemma .
Lemma 3.11. The source term ry;, defined by , 18
(1) of order O(&7) in H*(Q) for all 0 < v < % if u® € H*<(Q);
(2) of order O(E%) in H=1(Q) if u’ € C%(Q).
Proof. Assume u® € H*(Q) (resp. u® € C?(Q2)). Let 1 < k < M be fixed and consider

it =9 (A(2) Tl (0 2) )+ [V A Vik] (. D).
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We focus on the first term of rlfl’k. For all ¢ € H(9),

<V ‘ (A(:)Vx b (35 D) ’ ¢<£)>H1(Q),H6(Q)
/Q(A(f)vwvfz’s (= ”;))ws(x)dx

< 4@ Vvl 2. 2)] o o 199l 2y
ol

Ly As, according to (3.16)),
val]fl’g(l‘»g) <§zﬁ6( ) - VM*>8 O’

the idea is to bound the L?(2) norm of this term using a Hélder inequality and (3.19).
Doing so, one has to pay attention to the regularity of u’, and to carefully choose the
LP(Q) spaces involved.

If u® € 02(5),
k,B, k,B,* 0 k.B.e(x By
H(vbl (5) Ve )a“a”ﬂu ‘L?(Q) = Hvbl (2) - v

The assumption u® € C2?(Q) plays here the same role as u® € C'(Q) for (3.18). Use (3.19) -
with p = 2 to conclude.

If u® € H?t%(), we cannot proceed as above because 6%816u0 does not belong to
L*>(Q2). By the Sobolev injections, H*(2) is continuously embedded in L?(2) for all

<q< % Yet 0, 8ﬁu0 is in H¥(Q2). Take 2 < ¢ < ﬁ and ¢ > 2 such that

<CHVU :cf) .

At this point we need to estimate vavl’fis (;p £)

'€

—1—% % Necessarlly = < ¢. Holder’s inequality yields
Bie

(Ufl’ (2) v )690”‘8””6“ ‘LZ(Q) = H i o (E) v Li(2)

Apply now with p = q to get Hvval (ac 7) @) = O(E%),

The second term of rbl needs to be treated differently. The key ingredient is Hardy’s
inequality: for all ¢ € H}(€)

Haxaaxﬁu

Moy -

|58 gy < 19250

where d(z,00) is the distance from x to 9Q. Let ¢ € H}(2). For all 2 < ¢,q < oo such
that L + 1 =2

a7
x

Ve A Vi (v 2 ) oty

3

‘|

nk—
8%/“0(1.) ’x nE c

< Ce H8 ”k’%s(g)aﬂﬁ 12(Q) H Te 580

[e3

L2()
s 192000 | Loy [ VOl 2 -

If u® € H?t@(Q), then take 2 < ¢ < % and apply (3.19) with p = gand m = 1. If
u® € C?(2), then take ¢ = oo and ¢ = 2 and apply (3.19)) with p =2 and m = 1. O
Lemma 3.12. The boundary function oy, defined by (3.21)), is
(1) of order O(e¥) in Wl‘%ﬂ’(a(z) forall1 <p<2, ifu’ € H**(Q);
18
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(2) of order O(g) in W”i’p(am forall1 <p <2, ifu’ € H}(Q)NC%Q).

Proof. First of all, using proposition one notices that ¢j; belongs to H %(8(2) As ¢
factors into V(é)VuO we immediatly get the very rough estimate
1
il 0oy = O(H)
which is far from being enough. We do not try further to get a bound in H 3 (092).

We refer to [I1] for the case when u® € H3(Q) N C%(Q). If u® € H***(Q) the proof
follows the same scheme, with differences due to the weaker regularity assumption on u°.
Assume for the rest of the proof that u® € H?>T%(Q). The edge estimate goes on as in the
case u’ € H3(2) N C%(Q) and one gets for all 1 <p <2, m € N

96,13 gy = OE™)

(692)

where 9 is a smooth function on 9 compactly supported in QN K* outside the vertices.

Let us now focus on the estimate near a vertex O lying at the intersection of K and K?2.
We introduce polar coordinates r = r(z) and 6§ = 6(z) centered at O and use a smooth
function ¥ on 02 compactly supported in a vicinity of O. Let 1 < p. The tame estimate

322 Mol ey <€ (1 lmom Il iy + 190 oy 1953 )

holds for all f,g € L*>(92) N Wl_ﬁ’p(a(l). Taking advantage of the fact that H?*+(Q)
injects in C1¥(Q), one knows VT—’jO € L>®(09). Besides, Z—fjo belongs to WP (Q) for all
1 < p < 2. Therefore VT—ZjO € L>®(09) N Wlf%’p((?Q) for all 1 < p < 2 and (3.22) yields

19268l < CLIV Gl oy 52

19V Ol o [052 |y -o)
By estimating first on 9Q N K' then on 9 N K? one obtains for all 1 < p < 2
[V (2 )HLoo(aQ) O(=¥)
(3.232) [rev (: HLP Q) = O(5w+%)
(3.230) [V (2) lypogony = OE77).
Interpolating (3.23a)) and (3.231) gives

Lo (9Q)

1 w142
[orV - pr oy < C IV (2 it oo 107V (2 )Hm oy = O 7%).
Finally, H@ZJ24p lef%,p = O(E ) which concludes our proof. O

We conclude this section by expounding how to deduce a bound on ej; from the lemmas

and We focus on the case when u® € H*()), as the reasoning is a little more
subtle than in the case u® € H3(Q) N C?(Q). It is very straightforward to adapt the proof

in the latter case (see also [II]). Lemma m gives bounds for ¢j; in WP (0Q2) for

1 <p < 2. As we lack an estimate in H%(GQ), we cannot bound ef;, in H'(2). We thus
have to use results on elliptic equations in divergence form and with source term in some
W~=1P(Q) space. Let us state a general theorem that suits to our framework (for references
see below).

19



Theorem 3.13 (Meyers). Let Q C RY be a Lipschitz domain, A = A*(y) € My (R) a
family of C*°(Q) functions. Assume the ellzptzczty of A.

There exists a py < 2 such that for all f € H-1(Q) if u € H}(Q) is a weak solution of
~V-AVu = f in HY(Q) and if for allpy <p <2, f € W LP(Q), then u € Wol’p(Q) and
there exists C'(p) > 0,

H“HWOW(Q) < C(p) Hwa—lm(Q)

Such an estimate originally appeared in the work of Meyers [16], where the case of
smooth C? domains © and scalar equations is treated. It has been extended by Gallouet
and Monier in [9] to domains © with Lipschitz boundary. In their recent survey article
[15], Maz’ya and Shaposhnikova give very general estimates working for Lipschitz domains
Q) and systems of elliptic equations. Our theorem happens to be a very special case
of theorems 1 and 2 in [I5]. To make the link obvious take m = 1, I = N, a = 0; then
s=1— 2 W (Q) = WP(Q) and V2(Q) = WP ().

It is important to notice that py (resp. C(p)) only depends on the coercivity constant
of A (resp. on the coercivity constant of A and p). This makes the theorem applicable to
our homogenization problem. We know from the proof of lemma that

ene [ W0
1<p<2

Thus there exists a lifting ¢, of ¢f; belonging to W1P(Q) for all 1 < p < 2 such that

[ hwriey < O Il gy

with C(p) independent of ¢, as usual. The difference e}, — ¢, € H&(Q) solves
x £ £ 15 x £ 13
-V A(g)v (e — dp) = + V- A(g)v%z =: Fy.
As Fj belongs to W=1P(Q) for 1 < p < 2, we have

321 175l ) < [HmuH 1l |
Let pp < 2 given by theorem [3.13] Then, for all py < p < 2,

Heil_%lHWg’p( Q) = () (| 52l - Lp(Q) "
Let 0 < v < %. Then, it follows from and from lemmas and that for all

po<p<2,
1FGllw-10(0) = O).
To get an L?(£) estimate on €5, use the Sobolev injection of WP(2) in L%(2) and, once

1
again, our W' »*() bound on O

4. A FIRST-ORDER ASYMPTOTIC EXPANSION OF THE EIGENVALUES

This section is concerned with the final step of the proof of theorems [I.6] and [I.7] Let
E\o be the finite-dimensional eigenspace associated to A°. From the ideas explained in the
introduction, and in particular the third part of theorem we know, in any case, that
Ey C H**%(Q), with 0 < w. When  is a smooth uniformly convex domain, we take
w=1.

We have recourse to the ideas involved in [I7] to prove the asymptotic expansion of the
eigenvalues. Moskow and Vogelius use abstract estimates due to Osborn in [18]. We recall
the estimate we need in terms of 7¢ and T°. Assume that A\ is an eigenvalue of order m.
Then, Eyo is m-dimensional. Let A0 = \0F = \0Ok+1 — = — \Ok+m—1 = The associated
eigenvectors v9% ... v%*+t™=1 form an orthogonal basis of E\o.
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Theorem 4.1 (Osborn in [I8]). There exists a constant C > 0 such that

)

_ : ; 2
(4_1) )\i 1 Z] 3 k+3 _ % Z;nzol (Te _ TO)UO,kﬂ’ vO,k+]>‘ <C H(Te _ T0)|EA0‘

where T¢ and T° are seen as operators acting in L?(Q) and (-,-) denotes the scalar product

in L?(92).

This theorem is a straightforward corollary of theorem 3.1 in [I7]. Its proof really uses all
properties of the operators 7¢ and T, among other things selfadjointness and compactness.
The first thing to do is to estimate H(T€ - TO)|EAO H Let f € Eyo; we call u® := T¢ f and
u® := TOf. We need to estimate HuE — uOHLQ(m. We can improve the bounds of section
such as . Those bounds are not enough to deduce from a first-order asymptotic

expansion of A°. The loss of O (%) in estimate ([2.13) is due to the bad bound of 1927“ in
Hz(09):

19

ublHL2 <Ce: 02| 720

0
< [Pl ey < C X001 13
If Q is a smooth domain, ([1.7)) can be shown thanks to the results of Avellaneda and
Lin. Theorem [I.3] yields indeed

1emill 2y < ClloC Dl 2g00) < Clle’ 2oy -

The assumption u® € H?(2) being clearly fulfilled as u® = TV f = 30 L £ it is easy to adapt
the proof of corollary [2.3] to conclude that:

(4.2) Hu < CsHu < Ce

—u HL2(Q) OHH2 H“0HH2+w(Q)'

Assume now that 2 is a polygonal domain satisfying either (RAT) or (DIV). A uniform
bound in ¢ of ¥ ;, does not follow from the results of Avellaneda and Lin. The estimates
of section [2] are sufficient to get the convergence of the boundary layer in section [3] up
to the extraction of a subsequence under assumption (RAT). Actually theorem (resp.
implies that: there exists a sequence (g,) such that |05, blHL2 <C HUOHHme)

(

smooth, that (4.2) holds. In order to avoid extracting subsequences we now omit the case
of polygonal domains under assumption (RAT).
It remains to bound HUOH H2+(Q) by H fH L2 Taking advantage of the equivalence of

norms on the finite-dimensional space Eyo C H*™(Q) C H?(f2), there exists 0 < C such
that for all w € Eyo,

(4.3) HwHH2+w(Q <C HwHL2(Q) :
Therefore, combining (4.2]) with ( ., we get
HTE T°f||Lz < O [[u]l p2veey < Cellfll o)

<C |’uOHH2+w(Q)). We conclude, as in the case when () is

which shows that
(T = T)|g,,| < Ce.

Our final goal is to prove (1.15]), (1.16)) and (1.17]). The reasoning, in every case, follows
the lines of [I7]. Estimate (4.1)) now sums up in:

1 1 m—1 1 1 m—1 ‘ A
(4.4) T Y TR O (72 = TO)04+T 0447} 1 O(2).
=0 =0

21



Let us focus on - Z;;Bl (T — TO)p%k+7 WOk H7) and work on ((T€ — TO)v®k+i Ok+7)
j being fixed in {0,...,m — 1}. We call us*+J := T%O’kﬂ. This function solves ([2.1)).
According to estimate (2.19) of theorem as vOFH € H2He(Q),

Hu&kﬂ(‘r) - %Uo’kﬂ@) —5ox* (%) Dy 0" () + %ﬂi,k+j,bl($)HL2(Q) - O(s”%),

where 95 ;. bl solves (3.1)) with v%**J instead of u®. Cauchy-Schwarz inequality implies

(4.5) <(Ta o TO)UO’k+j, UO,k+j> — / ()\10 0,k+j (QS‘) _ ua,k—l—j(x)) Uo’k+j(l‘)d$
_ € o (33 9. Okt 0.k+7 (1) 19 0.k+7 (Vo + O (1%
=0 QX - zo U (z)-v (z)dr + —5 )\0 v,k—l—j,bl(x) v (z)dx + (5 )

We intend to show that the term involving x® in (4.5)) is of order O(EH%). In order to
carry out integrations by parts, we introduce, for each 1 < a < 2, a periodic C'**° solution
b =b*(y) € Mn(R) to

Ay b = x“,
the Fredholm property being satisfied as ng x*(y)dy = 0. An integration by part gives

3

2 (2) 0raH @) - 05 @)
Q

= ;0 A 2A (b (g)) D, VORI () - ORI (2) da
2

= /6\0 / eV (ba <§>> -V (Bxavo’k"‘j(x)vo’kﬂ(x)) dx
< Ce? HsV (b (%)) HV (Do v () 00k (1)
< Ce2

We deduce from . and . that

1= 1
% Z M\&k+7 -
j=0

[P i)

—_

3

<(T5 _ TO) 0,k+7j Uo,k+j> + 0(52)

3=
.
Il
_.o

3

1 13 . w
E )\O/ 191) K+, bl 07k+]($)dl’+0(51+2).
=0

Q

The results of section [3| now apply, in particular theorems (in this case up to
the extraction of a subsequence) and and yield that

(95 400 = T gergaill 2oy = O€7)

for suitable exponents 0 < ~:
(1) for all 0 <y < r, when Q is a smooth uniformly convex domain;

(2) forall 0 <y < § (resp. for v = f), when € is a convex polygon satisfying either
(RAT) or (DIV) and Eyo C H?>T¥(Q) (resp. Eyxo C H3(Q) N C2%(Q)).

Therefore,

1 m—1 1 1 m—1
s * 0,k+j 1+
Y T~ 2 | Phksa@) O @)de +O(E),
=0 =0



with ~ given above; from the convergence of the eigenvalues A\&*t7 towards A%F+7, we

deduce that

—1
Oml

m—1
1 1 .
E Z W = )\0 + 87 / '19,0 K+, bl 07k+‘7 (x)dl' + O(€1+'Y),
=0
which achieves the proof of theorems @ and [I.7]
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