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Abstract

The purpose of this note is to explain how to use compactness to get uniform esti-

mates in the homogenization of elliptic systems with or without oscillating boundary.

Along with new results in this direction, we highlight some important applications to

pointwise estimates of Green and Poisson kernels, to the homogenization of boundary

layer systems and to the boundary control of composite materials.

1 Introduction

In this note we aim at describing how to get uniform Lp, Hölder and Lipschitz bounds for
uε = uε(x) ∈ RN solving the elliptic system in divergence form®

−∇ ·A(x/ε)∇uε = f +∇ · F, x ∈ Ωε,
uε = g, x ∈ Γε ⊂ ∂Ωε,

(1.1)

where Ωε ⊂ Rd. The matrix A is typically assumed to be periodic. On the contrary, no
structure assumption is made on the oscillations of the boundary ∂Ωε. All the techniques
we use are designed for systems rather than single equations.

The general strategy to get uniform estimates, the so-called compactness method, has
been developed by Avellaneda and Lin in the late 80's and applied successfully to a number
of situations: elliptic or parabolic equations, Dirichlet or Neumann boundary conditions. . .
Here, we emphasize in particular the recent results of the paper [30] related to uniform
estimates in domains with oscillating boundaries. Our purpose is also to describe some
important results that can be achieved thanks to the uniformity of these estimates in ε.
Needless to say, the contents of this introductory note are far from being exhaustive on the
subject, and we refer throughout the text to the original works. There, the reader can �nd
a rich variety of results as well as detailed proofs. For a general introduction to (periodic)
homogenization theory, the classical books by Bensoussan, Lions, Papanicolaou [10] and
Cioranescu, Donato [14] for instance are nice references.

Outline of this note Below we give several examples as motivations for the results
presented in this note. The end of the introduction summarizes our main notations and
assumptions. Section 2 is an introduction to compactness methods in homogenization. We
review the classical approach of Avellaneda and Lin so as to give an insight into the main
features and issues of the compactness method. We also outline the current developments
of the compactness method. The recent results of the paper [30] are explained in section
3. The last part 4 deals with applications of the uniform estimates to pointwise bounds on
kernels, to uniform estimates in Lp and to boundary layers in homogenization.
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Pointwise estimates in potential theory Let us look at the fundamental solution
G = G(y, ỹ) of −∇ · A(y)∇. What we would like to describe is the large scale behavior
of G(y, ỹ), i.e. the behavior for |y − ỹ| � 1. We introduce the (very small) number
ε = 1/|y − ỹ| and the rescaled variables x = εy, x̃ = εỹ, so that |x − x̃| is of order one.
The fundamental solution G satis�es the important scaling property

G(y, ỹ) = εd−2Gε(x, x̃), (1.2)

where Gε is the fundamental solution associated to the operator with highly oscillating
coe�cients −∇ · A(x/ε)∇. Thanks to (1.2), the large scale behavior of G is related to
the local behavior of the kernel Gε. To put it in a nutshell, our initial problem of �nding
a bound for G(y, ỹ) when |y − ỹ| � 1 becomes an homogenization problem for Gε(x, x̃),
|x− x̃| ∼ 1.

Boundary layer I: uniform estimates in Lp Although raised by Bensoussan, Lions
and Papanicolaou [10, page xiii] in the 70's, the homogenization of boundary layer systems®

−∇ ·A(x/ε)∇uεbl = 0, x ∈ Ω
uεbl = ϕ(x/ε), x ∈ ∂Ω.

(1.3)

has been a longstanding open problem. In this system, there are oscillations not only in
the coe�cients, but also in the Dirichlet boundary data ϕ = ϕ(y) which is assumed to be
periodic in y. The oscillations on the boundary create strong gradients in a layer of size
O(ε) close to the boundary, as is re�ected by the standard a priori estimate

‖∇uε‖L2(Ω) . ε−1/2. (1.4)

The goal of the homogenization is to �nd a non oscillating homogenized matrix A and
boundary data ϕ so that the solution of the homogenized system approximates well uεbl in
the limit ε→ 0.

This problem has attracted a great deal of attention in recent years: see [24, 23, 36]
and the related papers [13, 17, 18] for non divergence form equations. Its di�culty lies in
the following two facts: on the one hand the a priori bound (1.4) is singular in ε, on the
other hand the boundary breaks the periodic microstructure, making the behavior of uεbl
very sensitive to the interaction between the periodic lattice and ∂Ω.

A �rst reasonable attempt is to get uniform bounds on uεbl. Of course if the system is
scalar, i.e. N = 1, the maximum principle gives a uniform bound for uεbl in L

∞(Ω). This
uniform a priori bound has been extended to Lp for 1 < p <∞ by Avellaneda and Lin [6]
in su�ciently smooth domains (satisfying a uniform exterior sphere condition). How do
these uniform Lp bounds extend to systems or less regular domains?

Boundary layer II: asymptotic behavior Blowing-up in the vicinity of a point of ∂Ω
may be a good way to get an insight into the interplay between the microstructure and
the boundary ∂Ω in the boundary layer system (1.3). One is typically led to the analysis
of the system ®

−∇ ·A(y)∇vbl = 0, y · n > 0,
vbl = ϕ(y), y · n = 0,

posed in the half-space {y · n > 0}, with n ∈ Sd−1. Of particular importance is the
asymptotic behavior of vbl(y) far from the boundary, i.e. when y · n → ∞. The latter
strongly depends on n and is ultimately related to the homogenized boundary condition
ϕ.
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The representation via Poisson's kernels gives

vbl(y) =

ˆ
ỹ·n=0

P (y, ỹ)ϕ(ỹ)dỹ

=

ˆ
x̃·n=0

1

εd−1
P (x/ε, x̃/ε)ϕ(x̃/ε)dx̃,

where we have performed the change of variable y = x/ε, ỹ = x̃/ε with ε := 1/(y · n).
Therefore analyzing the limit y · n→∞ of vbl boils down to studying the behavior of the
highly oscillation Poisson kernel P ε(x, x̃) := 1

εd−1P (x/ε, x̃/ε) associated to the operator
−∇ ·A(x/ε)∇.

Composite materials and boundary control This problem may have triggered much
of the interest into uniform estimates in homogenization. In the control of composite
materials the oscillations at the microscopic scale make the control tedious to compute.
Two approaches are possible to deal with this complexity: either one �rst simpli�es the
problem, then computes the control, or one �rst computes the control and then tries to
simplify it. The �rst approach is where homogenization may help.

One example pointed out by Lions [33] is the optimal control of the wave equation in
an heterogeneous environment. For a boundary data g ∈ L2(∂Ω), we call yε = yε(t, x; g)
the solution of the initial value problem

yεtt −∇ ·A(x/ε)∇yε = 0 in (0, T )× Ω,
yε(0, x) = y0(x) in Ω,
yεt (0, x) = y1(x), in Ω,
yε(t, x) = g(x), on ∂Ω.

The optimal control problem reads as follows: for a �xed time T > 0, minimize the cost
function

J ε(g) =

ˆ
Ω

[yε(T, x; g)− F (x)]2dx+

ˆ
∂Ω
g.

over all g ∈ L2(∂Ω), where F = F (x) ∈ L2(Ω) is a prescribed �nal state. A minimizer gε

of J ε exists and is unique; it is the control we are looking for. The goal, as described by
Lions is to �nd the limit of the cost functional J ε and of gε. Is the limit problem simply
the one where the oscillating coe�cients A(x/ε) have been replaced by the homogenized
ones? The key issue lies in the convergence of yε(·; g) to y0(·; g) in L∞((0, T );L2(Ω)).

Avellaneda and Lin [5, 8] have considered a simpler stationary problem (Pε): minimize
the cost functional

Iε(g) =

ˆ
Ω

[uε − F (x)]2 +

ˆ
∂Ω
g2,

over g ∈ L2(∂Ω) where uε = uε(x; g) solves®
−∇ ·A(x/ε)∇uε = 0, x ∈ Ω,

uε = g, x ∈ ∂Ω.

Is the formal limit problem (P0), minimize

I0(g) =

ˆ
Ω

[u0 − F (x)]2 +

ˆ
∂Ω
g2

over g ∈ L2(∂Ω) where u0 solves®
−∇ ·A∇u0 = 0, x ∈ Ω,

u0 = g, x ∈ ∂Ω,
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relevant to analyse the limit ε→ 0? Again, the main question is to study the convergence
of uε in L2. The result of [5, Proposition 4] is that the optimal triple (gε, uε(·; gε), Iε(gε))
for (Pε) does not necessary converge to the optimal triple (g0, u0(·; g0), I0(g0)) for (P0).
In fact, I0 has to be modi�ed into

Ĩ0(g) =

ˆ
Ω

[u0 − F (x)]2 +

ˆ
∂Ω
pg2,

where p = p(x) accounts for the high frequency oscillations of the Poisson kernel (for more
details see [8, page 6]). We conclude this paragraph by emphasizing that this problem
underlies and motivates a lot of results expounded in this note.

Main notations and assumptions Let λ > 0, 0 < ν0 < 1 andM0 > 0 be �xed in what
follows. Notice that Ωε may be bounded or not, and may or may not depend explicitely
on ε; Γε may be empty. We assume that the coe�cients matrix A = A(y) = (Aαβij (y)),
with 1 ≤ α, β ≤ d and 1 ≤ i, j ≤ N is real, that

A belongs to the class C0,ν0 and ‖A‖L∞(Rd) + [A]C0,ν0 (Rd) ≤M0, (1.5)

that A is uniformly elliptic i.e.

λ|ξ|2 ≤ Aαβij (y)ξαi ξ
β
j ≤

1

λ
|ξ|2, for all ξ = (ξαi ) ∈ RdN , y ∈ Rd (1.6)

(we follow Einstein's convention, repeated subscripts stand for summation) and periodic
i.e.

A(y + z) = A(y), for all y ∈ Rd, z ∈ Zd. (1.7)

We say that A belongs to the class A0,ν0 if A satis�es (1.5), (1.6) and (1.7). The boundary
is locally described as a graph of a function ψ taken in the class C1,ν0

M0
de�ned by

C1,ν0
M0

:= {ψ ∈ C1,ν0(Rd−1) : 0 ≤ ψ ≤M0, ‖∇ψ‖L∞(Rd−1) + [∇ψ]C0,ν0 (Rd−1) ≤M0}.

Throughout this text,

Dε
ψ(0, r) = Dε(0, r) :=

{
(x′, xd), |x′| < r, εψ(x′/ε) < xd < εψ(x′/ε) + r

}
,

∆ε
ψ(0, r) = ∆ε(0, r) :=

{
(x′, xd), |x′| < r, xd = εψ(x′/ε)

}
.

The domain Ωε = Dε(0, 1) and its boundary part Γε = ∆ε(0, 1) are frequently used to state
local boundary estimates. Keep in mind that Dε(0, 1) and thus uε solving (1.1) depend on
ψ, although we usually do not write explicitly the dependence in ψ. The reason for this is
that all our results hold uniformly for ψ in the above class C1,ν0

M0
.

2 The compactness method in homogenization

Compactness methods are a fairly general tool in analysis. The basic idea is to use com-
pactness in a proof by contradiction to inherit some regularity from a limit problem. These
methods originated in the works of De Giorgi [15] and Almgren [1] concerned with the reg-
ularity of minimal surfaces (Plateau problem). The approach has become standard in
geometric measure theory [11] and for the regularity theory in the calculus of variations
[16, 25]. Ca�arelli [12] has applied this kind of ideas to the study of the regularity of
free boundaries. All these results are achieved by blowing-up in the vicinity of the point
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where one wants to prove regularity. By doing so, the aim is for instance to approximate
a nonlinear problem by a tangent linear one, and use the regularity theory for the linear
problem together with compactness to infer regularity properties for the original nonlinear
problem. A common denominator of these works is that they proceed in three steps:

compactness used in a proof by contradiction, see for instance [16, Lemma 4.1], [25,
Lemma 1.1 page 93], [11, Main Lemma] or [12, Lemma 6],

iteration of step 1, see for example [16, Lemma 7.1], [25, pages 95− 96], [11, Lemma 17]
or [12, Lemma 7],

conclusion of the proof using the result of step 2.

The use of compactness arguments in homogenization problems goes back to the seminal
works of Avellaneda and Lin [4, 7, 8]. In order to get Hölder or Lipschitz estimates uniform
in ε on uε = uε(x) ∈ RN weak solution to

−∇ ·A(x/ε)∇uε = f +∇ · F in B(0, 1), (2.1)

one proceeds in three steps. The �rst step is where the compactness argument takes place.
The basic idea is to take advantage of the convergence toward the constant coe�cient
homogenized operator to get some estimate at scale θ uniform in ε for 0 < ε < ε0(θ). The
second step is the iteration of step one, in order to get an estimate at scale θk uniform in ε
for 0 < ε < θk−1ε0(θ). The last step, conclusion, consists in a blow-up argument: at small
scale O(ε) one can rely on classical estimates.

2.1 Hölder estimates

Let us see how the compactness method works on the simple example of the Hölder esti-
mate.

Proposition 1 (Hölder estimate, [4, Lemma 9]). For all κ, κ′ > 0, there exists C > 0 so

that for all A ∈ A0,ν0, for all ε > 0, for all f ∈ Ld/2+κ′(B(0, 1)), F ∈ Ld+κ(B(0, 1)), for
all uε ∈ L2(B(0, 1)) weak solution to (2.1) the following estimate holds

[uε]C0,µ(B(0,1/2)) ≤ C
¶
‖uε‖L2(B(0,1)) + ‖f‖Ld/2+κ′ (B(0,1)) + ‖F‖Ld+κ(B(0,1))

©
,

where µ := min (1− d/(d+ κ), 2− d/(d/2 + κ′)). Notice that C depends on d, N , on

‖A‖C0,ν0 i.e. on M0, on λ and κ, but not on ε.

For simplicity, we carry out the proof in the case without source terms, i.e. f = F = 0.
Of course, it is enough to prove that there exists C > 0 so that for all ε > 0

−
ˆ
B(0,1)

|uε|2 ≤ 1 implies [uε]C0,µ(B(0,1/2)) ≤ C.

For systems it is appropriate to measure the oscillation in terms of integral norms. Indeed
Hölder continuity can be characterized in terms of Campanato spaces [25, Theorem 1.2]:
when Ω ⊂ Rd is a Lipschitz domain and u ∈ C0,µ(Ω) for 0 < µ < 1, then

[u]2
C0,µ(Ω)

∼ sup
x0∈Ω, ρ>0

ρ−2µ−
ˆ
B(x0,ρ)∩Ω

∣∣∣∣u−−ˆ
B(x0,ρ)∩Ω

u

∣∣∣∣2dx,
where ∼ means that the semi-norms on the left and right hand sides are equivalent.
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First step: compactness This is also known as the improvement step. Let 0 < µ < 1.
We aim at proving that for some θ su�ciently small, there exists ε0 = ε0(θ) > 0 so that
for all 0 < ε < ε0,

−
ˆ
B(0,θ)

∣∣∣∣uε −−ˆ
B(0,θ)

uε
∣∣∣∣2 ≤ θ2µ. (2.2)

The proof follows from a contradiction argument.

Let A0 be any constant matrix satisfying (1.6). Any weak solution u0 to

−∇ ·A0∇u0 = 0 in B(0, 1/2), (2.3)

is bounded in C1(B(0, 1/4)) by its L2(B(0, 1/2)) norm. Therefore, for all µ < µ′ < 1,

−
ˆ
B(0,1/4)

∣∣∣∣u0 −−
ˆ
B(0,θ)

u0
∣∣∣∣2 ≤ C0θ

2µ′−
ˆ
B(0,1/2)

|u0|2 ≤ 2dC0θ
2µ′−
ˆ
B(0,1)

|u0|2 ≤ 2dC0θ
2µ′ ,

where C0 only depends on λ, not on the particular matrix A0. This is the key to the
contradiction argument. We choose 0 < θ < 1/4 su�ciently small so that

2dC0θ
2µ′ < θ2µ.

For this θ, we prove (2.2).

Assume (by contradiction) that there exists a sequence εk → 0, so that for all k, there
exists Ak ∈ A0,ν0 , and uεkk weak solution to

−∇ ·Ak(x/εk)∇uεkk = 0 in B(0, 1),

so that ˆ
B(0,1)

|uεkk |
2 ≤ 1 (2.4)

and

−
ˆ
B(0,θ)

∣∣∣∣uεkk −−ˆ
B(0,θ)

uεkk

∣∣∣∣2 > θ2µ. (2.5)

The uniform bound (2.4) implies via Cacciopoli's inequality that up to a subsequence

∇uεkk ⇀ ∇u0 weakly in L2(B(0, 1/2)),

uεkk → u0 strongly in L2(B(0, 1/2)).

These convergences and a standard oscillating test function argument (for more details see
[30, Theorem 3]) imply that u0 solves (2.3) with a constant matrix A0. Passing to the limit
in (2.5) yields

θ2µ ≤ −
ˆ
B(0,θ)

∣∣∣∣u0 −−
ˆ
B(0,θ)

u0
∣∣∣∣2 ≤ 2dC0θ

2µ′ < θ2µ,

which is a contradiction.

Remark 1 (necessity of the second step). The proof actually shows that for all θ su�ciently
small, there exists ε0(θ) so that the estimate (2.2) holds uniformly for 0 < ε < ε0(θ).
However, we do not have any control on ε0(θ) in terms of θ. This is the reason why we
need the second step, the iteration.
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Second step: iteration Our goal is to show that for all integer k, for all 0 < ε < θk−1ε0,

−
ˆ
B(0,θk)

∣∣∣∣uε −−ˆ
B(0,θk)

uε
∣∣∣∣2 ≤ θ2kµ. (2.6)

This estimate is of course true for k = 1 because of step 1 above.
Let k ≥ 1 and assume (2.6). For x ∈ B(0, 1),

U ε(x) :=
1

θkµ

®
uε(θkx)−−

ˆ
B(0,θk)

uε
´
.

It solves
−∇ ·A(θkx/ε)∇U ε = 0 in B(0, 1). (2.7)

Moreover, by (2.6),

−
ˆ
B(0,1)

|U ε|2 ≤ 1.

Therefore, we can apply the �rst step to U ε and get for ε/θk < ε0

1

θ2kµ
−
ˆ
B(0,θk)

∣∣∣∣uε −−ˆ
B(0,θk)

uε
∣∣∣∣2 = −
ˆ
B(0,θ)

∣∣∣∣U ε −−ˆ
B(0,θ)

U ε
∣∣∣∣2 ≤ θ2µ.

Remark 2 (key to the iteration). It is the uniformity of estimate (2.2) for 0 < ε < ε0,
which makes this procedure work. Indeed in equation (2.7) one can call ε′ := ε/θk, so that
step 1 applies for ε′ < ε0, i.e. ε < θkε0.

Third step: blow-up Let ε > 0 be �xed. Either ε > ε0, in which case the estimate in
Proposition (1) follows from the classical Schauder theory, or ε < ε0. We now focus on the
latter. There exists a unique integer k so that θk ≤ ε/ε0 < θk−1.

Let 0 < r < 1/2. Our goal is to prove that

−
ˆ
B(0,r)

∣∣∣∣uε −−ˆ
B(0,r)

uε
∣∣∣∣2 ≤ Cr2µ,

with a constant C uniform in r and ε. Assume r ≥ ε/ε0. Then, there exists an integer
1 ≤ l ≤ k so that θl ≤ r < θl−1, and

−
ˆ
B(0,r)

∣∣∣∣uε −−ˆ
B(0,r)

uε
∣∣∣∣2 ≤ C−ˆ

B(0,θl−1)

∣∣∣∣uε −−ˆ
B(0,θl−1)

uε
∣∣∣∣2 ≤ Cθ2(l−1)µ ≤ Cr2µ, (2.8)

with C dependent only on d and θ. Assume r < ε/ε0. Then, we carry out the blow-up
argument. This amounts to considering the auxiliary function

U ε(y) :=
1

εµ
uε(εy),

de�ned for y ∈ B(0, 2/ε0). Since

−∇ ·A(y)∇
®
U ε −−

ˆ
B(0,2/ε0)

U ε
´

= 0 in B(0, 2/ε0),

we have by the classical Schauder theory

[U ε]
C0,µ(B(0,1/ε0))

≤ C
∥∥∥∥U ε −−ˆ U ε

∥∥∥∥
L2(B(0,2/ε0))

.
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Rescaling the latter estimate, we get

[uε]
C0,µ(B(0,ε/ε0))

= [U ε]
C0,µ(B(0,1/ε0))

≤ C
∥∥∥∥U ε −−ˆ U ε

∥∥∥∥
L2(B(0,2/ε0))

= Cε−µ
Ç
−
ˆ
B(0,2ε/ε0)

∣∣∣∣uε −−ˆ
B(0,2ε/ε0)

uε
∣∣∣∣2
å1/2

≤ C

by (2.8) with r = ε/ε0. Thus, we have proved

sup
0<r<1/2

1

r2µ
−
ˆ
B(0,r)

∣∣∣∣uε −−ˆ
B(0,r)

uε
∣∣∣∣2 ≤ C.

It remains to consider the balls B(x, r) centered at x ∈ B(0, 1/2) and not at 0. This
point can be dealt with by simply translating the point x to 0. Of course, the coe�cients of
A are changed. However this change does not a�ect the proof, since the translated matrix
belongs to A0,ν0 and the above constant is uniform in this class.

Remark 3 (structure of the coe�cients). One of the crucial facts in the improvement
lemma is that the limit matrix A0 is a constant matrix, so that we can rely on the classical
Schauder estimates for systems. Without any structure assumption on A ∈ A0,ν0 , we know
by the abstract H-convergence theory developed by Murat and Tartar in the 70's (see [35]
and [14, Chapter 13]) that a subsequence of uεkk converges to u0 weak solution of

−∇ ·A(x)∇u0 = 0 in B(0, 1/2),

with A = A(x) ∈ L∞(B(0, 1/2)). However, in general A is no better than L∞. This
regularity is not su�cient for the Schauder estimates to hold for systems.

Remark 4 (boundary estimate). Following the same scheme as for the interior estimate,
Avellaneda and Lin have proved a boundary Hölder estimate uniform in ε for uε solving®

−∇ ·A(x/ε)∇uε = f +∇ · F, x ∈ D1
ψ(0, 1),

uε = g, x ∈ ∆1
ψ(0, 1),

with non oscillating boundary given by ψ ∈ C1,ν0
M0

. We refer to [4, Section 2.3] for a
statement and details of the proof. Remark that C1 regularity for ψ is enough for the
boundary Hölder estimate to hold.

2.2 Lipschitz estimates

In this part we �rst state the Lipschitz estimate proved by Avellaneda and Lin. We then
explain what makes its proof much di�erent from the proof of the Hölder estimate, although
both proofs rely on the three steps compactness scheme described above.

Proposition 2 (Lipschitz estimate, [4, Lemma 16]). For all κ > 0, 0 < µ < 1, there
exists C > 0 so that for all A ∈ A0,ν0, for all ε > 0, for all f ∈ Ld+κ(B(0, 1)), for all

F ∈ C0,µ(B(0, 1)), for all uε ∈ L∞(B(0, 1)) weak solution to (2.1), the following estimate

holds

‖∇uε‖L∞(B(0,1/2)) ≤ C
¶
‖uε‖L∞(B(0,1)) + ‖f‖Ld+κ(B(0,1)) + ‖F‖C0,µ(B(0,1))

©
.

Notice that C depends on d, N , M0, λ, κ and µ.
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A �rst important comment is that one cannot expect to have higher order derivatives
of uε bounded uniformly in ε. The reason for this is the following easy computation in
dimension d = 1: from

−dx(A(x/ε)dxu
ε) = 0 in (−1, 1),

we infer that there is a constant C > 0 so that

dxu
ε =

C

A(x/ε)
for x ∈ (−1, 1).

In particular, it is not possible to show C1,µ estimates for uε. Therefore, an approach
based on an integral characterization of C1,µ won't work.

The major issue one encounters for the Lipschitz estimate is the lack of (strong) com-
pactness of ∇uε in L∞. Such a compactness property is at the heart of the proof by
contradiction of step 1. Thus one has to cook up another approach. For simplicity, we
take throughout this section f = F = 0; the appealing points lie elsewhere. Notice that
uε−uε(0) solves (2.1). By simply rescaling the classical Lipschitz estimate (for non highly
oscillating coe�cients), we get that

‖∇uε‖L∞(B(0,ε)) = ‖∇(uε − uε(0))‖L∞(B(0,ε)) ≤
C

ε
‖uε − uε(0)‖L∞(B(0,2ε)), (2.9)

where C > 0 does not depend on ε. The idea of the proof is to show, in two steps, that

‖uε − uε(0)‖L∞(B(0,2ε)) = O(ε), (2.10)

so that the right hand side in (2.9) is bounded by a constant uniformly in ε. As we will see,
showing a (2.9)-like estimate strongly uses the homogenization properties of the operator
−∇ ·A(x/ε)∇ and even more, the periodic structure of the oscillations of A.

Hereafter, we concentrate on the second step of the compactness method. We emphasize
the need for correctors, which prompts the use of more structure (periodicity) than in the
proof of the Hölder estimate. Let us show that there exists C > 0 so that for all ε > 0

‖uε‖L∞(B(0,1)) ≤ 1 implies ‖∇uε‖L∞(B(0,1/2)) ≤ C.

Moreover, without loss of generality, one can assume that uε(0) = 0.

Step 1: improvement A proof by contradiction makes it possible to show that there
is ε0(θ) > 0, so that for 0 < ε < ε0(θ),∥∥∥∥uε(x)− x · −

ˆ
B(0,θ)

∇uε
∥∥∥∥
L∞(B(0,θ))

≤ θ1+µ. (2.11)

Notice that the bound ‖uε‖L∞(B(0,1)) ≤ 1 yields enough compactness (via Ascoli-Arzela
type arguments) to pass to the limit in the proof by contradiction.

Step 2: iteration The idea is again to iterate step 1. Let k be an integer and assume
that for 0 < ε < θk−1ε0,∥∥∥∥uε(x)− x · −

ˆ
B(0,θk)

∇uε
∥∥∥∥
L∞(B(0,θk))

≤ θ(1+µ)k.

Then for x ∈ B(0, 1), let

U ε :=
1

θ(1+µ)k

®
uε(θkx)− θkx · −

ˆ
B(0,θk)

∇uε
´
.

9



On the one hand ‖U ε‖L∞(B(0,1)) ≤ 1, and on the other hand U ε solves

−∇ ·A(θkx/ε)∇U ε =
1

θµk
∂xα

Ç
Aαβ(θkx/ε)−

ˆ
B(0,θk)

∂xβu
ε

å
in B(0, 1). (2.12)

Here, we bump into a new issue. Indeed, the equation (2.12) has a right hand side, which
prevents us from applying directly the estimate of the �rst step (without right hand side).
Notice that this issue is not due to the fact that we have assumed f = F = 0. The reason
for the right hand side lies in the oscillations of A. The way to cope with this di�culty is
to modify the expansion for uε. We have to introduce correctors.

Let χ = χγ(y) ∈MN (R), y ∈ Td, solving the cell problems

−∇y ·A(y)∇yχγ = ∂yαA
αγ , y ∈ Td and

ˆ
Td
χγ(y)dy = 0. (2.13)

Here we take advantage of the periodic structure for the existence of the correctors χ.
Since ‖χ‖L∞(Td) <∞, we have εχ(x/ε)→ 0 in L∞(B(0, 1)), and thus it is easy to modify
the �rst step to get instead of (2.11) the estimate∥∥∥∥uε(x)−

{
x− εχ(x/ε)

}
· −
ˆ
B(0,θ)

∇uε
∥∥∥∥
L∞(B(0,θ))

≤ θ1+µ. (2.14)

We notice that

U ε :=
1

θ(1+µ)

®
uε(θx)−

{
θx− εχ(θx/ε)

}
· −
ˆ
B(0,θ)

∇uε
´

solves
−∇ ·A(θx/ε)∇U ε = 0 in B(0, 1).

Since by (2.14) ‖U ε‖L∞(B(0,1)) ≤ 1, we get for 0 < ε/θ < ε0,∥∥∥∥U ε(x)−
{
x− ε/θχ(θx/ε)

}
· −
ˆ
B(0,θ)

∇U ε
∥∥∥∥
L∞(B(0,θ))

≤ θ1+µ,

i.e.
‖uε(x)− x · aε2 + εbε2(x/ε)‖L∞(B(0,θ)) ≤ θ2(1+µ),

with aε2 ∈ RdN , bε2 = bε,γ2 (y) ∈MN (R)

bε,γ2 (y) = χγ(y) · −
ˆ
B(0,θ)

∇uε + θµχγ(θy) · −
ˆ
B(0,θ)

∇U ε,

and
|aε2| ≤ (C/θ)(1 + θµ),

‖bε2‖L∞(Td) ≤ (C/θ)(1 + θµ).

Reiterating this procedure, one can prove that there is a constant C > 0, for all integer k,
for all 0 < ε < θk−1ε0, there are a

ε
k ∈ RdN and bεk = bε,γk (y) ∈MN (R) so that

|aεk| ≤ (C/θ)(1 + θµ + . . . θ(k−1)µ),

‖bεk‖L∞(Td) ≤ (C/θ)(1 + θµ + . . . θ(k−1)µ),
(2.15)

and
‖uε(x)− x · aεk + εbεk(x/ε)‖L∞(B(0,θk)) ≤ θk(1+µ). (2.16)
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Step 3: blow-up The case when ε > ε0 follows of course from the classical estimates.
Assume now for the remainder of this section that ε < ε0. There exists a unique integer
k so that θk+1 ≤ ε/ε0 < θk. With the estimate (2.16) of step 2 at hand, we can easily
estimate the size of |uε(x)| for |x| . ε. Indeed, it follows from (2.16) that

‖uε(x)− x · aεk + εbεk(x/ε)}‖L∞(B(0,ε/ε0)) ≤ C(ε/ε0)1+µ, (2.17)

with a constant C depending only on θ, neither on k, nor on ε. Therefore, thanks to the
uniform bounds (2.15)

‖uε‖L∞(B(0,ε/ε0)) ≤ Cε/ε0, (2.18)

with C > 0 uniform in ε. Now the classical Lipschitz estimate �nally yields

‖∇uε‖L∞(B(0,ε/(2ε0)) ≤
C

ε
‖uε‖L∞(B(0,ε/ε0)) ≤ C.

The bound
‖∇uε‖L∞(B(x,ε/(2ε0)) ≤ C

for x ∈ B(0, 1/2) and C > 0 uniform in x and ε simply follows from translating the origin
to x, since the translated coe�cients still belong to A0,ν0 .

Remark 5 (boundary estimate). As for the Hölder estimate, there is a boundary version
of the Lipschitz estimate. We refer to [4, Section 3.2] for a statement and details of the
proof. Remark that C1,ν0 regularity for ψ is needed for the Lipschitz estimate to hold (see
[27, Lemma 1.12] for counter-examples on C1 domains in R2).

2.3 Related recent works

The method of Avellaneda and Lin has inspired numerous works and it is impossible to be
exhaustive. We brie�y discuss here some very recent developments in four directions: other
types of microstructures (almost periodic, random), di�erent norms, di�erent boundary
conditions and other types of equations.

In the periodic setting, works by Shen and his collaborators address uniform W 1,p

estimates for elliptic equations [37] and for the system of elasticity [20] in non smooth
domains (Lipschitz or C1). The paper by Kenig, Lin and Shen [28] is devoted to uniform
W 1,p and Lipschitz estimates for elliptic systems with Neumann boundary conditions.

A number of results valid for elliptic equations has been transposed to parabolic equa-
tions. Geng and Shen [19] prove uniform interior Hölder, Lipschitz and W 1,p, as well as
boundary Hölder and W 1,p estimates.

In the past few months, and notably at the time where this note has been written, there
have been exciting breakthroughs toward relaxing structure assumptions on the coe�cient
matrix A.

Uniform (interior and boundary) Hölder estimates for (1.1) have been extended to
almost periodic structures. A comprehensive reference on this topic is the paper by Shen
[38]. The main novelty of this latter work is to provide quantitative estimates for the
almost periodic homogenization.

Armstrong and Smart [3] have been able to prove uniform Lipschitz estimates in some
random environments. Their method does not rely on compactness, but on (non optimal)
error estimates between uε and the homogenized solution u0. The basic tool of the proof,
which replaces the improvement lemma (step 1), is a result (see [3, Lemma 5.1]) telling
that if a function v is su�ciently close to a function w satisfying a so-called �improvement
of �atness property�, then v itself satis�es the �improvement of �atness property�. Iterating
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this lemma they prove an estimate down to a mesoscopic scale. The work of Armstrong
and Smart emphasizes the need to separate the large scales, where homogenization holds,
from the small scales, where classical regularity theory applies.

The paper [3] has inspired two works, which have just come out. Based on the error
estimates lately obtained by Shen [38] in almost periodic homogenization, Armstrong and
Shen [2] have been able to prove interior and boundary W 1,p and Lipschitz estimates in
almost periodic environments. Since this approach relies on error estimates, one has to
quantify the almost periodicity. Inspired by [3], Gloria, Neukamm and Otto [26] have
proved Lipschitz estimates in quite general random environments. Homogenization is used
in a more qualitative way.

3 Lipschitz estimates in bumpy half-spaces

This section is devoted to a description of a recent work by Kenig and the author [30],
which is devoted to uniform estimates for elliptic systems near oscillating boundaries. The
main result of this paper is the following theorem concerned with estimates of uα,β weak
solution to ®

−∇ ·A(x/α)∇uα,β = f +∇ · F, x ∈ Dβ(0, 1),
uα,β = 0, x ∈ ∆β(0, 1),

(3.1)

where α, β > 0.

Theorem 3 (Lipschitz estimate, [30, Theorem 27]). Let 0 < µ < 1 and κ > 0. There

exist C > 0, ε0 > 0, so that for all ψ ∈ C1,ν0
M0

, for all A ∈ A0,ν0, for all α, β > 0, for

all f ∈ Ld+κ(Dβ(0, 1)), for all F ∈ C0,µ(Dβ(0, 1)), for all uα,β weak solution to (3.1) the
bounds

‖uα,β‖L∞(Dβ(0,1)) ≤ 1, ‖f‖Ld+κ(Dβ(0,1)) ≤ ε0, ‖F‖C0,µ(Dβ(0,1)) ≤ ε0

imply

‖∇uα,β‖L∞(Dβ(0,1/2)) ≤ C.

Notice that C and ε0 depend on d, N , M0, λ, ν0, κ and µ. Again, the salient point is the

uniformity in α and β of the constant C.

Remark 6 (rescaled estimate). Let r > 0. For uα,β solution of (3.1) in Dβ(0, r) (instead of
Dβ(0, 1)) and vanishing on ∆β(0, r), the uniformity in α and β gives the rescaled estimate:

‖∇uα,β‖L∞(Dβ(0,r/2)) ≤ C
¶
r−1‖uα,β‖L∞(Dβ(0,r)) + r1−d/(d+κ)‖f‖Ld+κ(Dβ(0,r))

+rµ‖F‖C0,µ(Dβ(0,r))

©
. (3.2)

A Hölder estimate uniform in α and β for (3.1) has also been proved in [30, Proposition
26]. The latter is much easier to establish than the Lipschitz estimate. We need the uniform
Hölder estimate in the proof of the Lipschitz estimate.

The main feature of our result is the lack of structure in the oscillations of the boundary.
In particular, ψ is neither assumed to be periodic, quasiperiodic nor stationary ergodic.
This generalization is in a another vein than the recent works [3, 2, 26]. Our point is to
remove any structure assumption on the boundary, and not to relax the hypotheses on the
coe�cients. We are aware of only one similar result in the literature. Gérard-Varet [21,
Theorem 11] has proved a Hölder estimate for Stokes's system near an oscillating boundary.
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Let us comment on some of the main di�culties of this problem. Since Lipschitz
estimates require C1,ν0 regularity of the boundary and

[∇(βψ(x/β))]C0,ν0 ' β−ν0 ,

the uniformity in β cannot be achieved by resorting to the boundary Lipschitz estimate of
Avellaneda and Lin [4, Lemma 20]. Moreover, �attening the boundary by

(x′, xd) ∈ Rd+ 7−→ (x′, xd + βψ(x′/β)) ∈ {xd > βψ(x′/β)}

can by no mean give the result in general. Indeed, assume for a moment that the equation
is scalar and that the coe�cient matrix A is the identity, so that −∇ · A∇ = −∆ and
denote by uβ a solution of (3.1) in that case. Then, ũβ de�ned by

ũβ(x′, xd) := uβ(x′, xd + βψ(x′/β)) for all (x′, xd) ∈ Rd+
is a weak solution to®

−∇ · Ã(x/β)∇ũβ = 0, x ∈ (−1, 1)d−1 × (0, 1),
ũβ = 0, x ∈ (−1, 1)d−1 × {0}.

The new matrix

Ã(x/β) :=

Ç
Id−1 −∇x′ψ(x′/β)

0 1

åT Ç
Id−1 −∇x′ψ(x′/β)

0 1

å
is oscillating at scale β, but a priori with no structure. If ψ is periodic, then we can apply
the theorem of Avellaneda and Lin. However, in the absence of structure in the oscillations
of the boundary, �attening the boundary does not help.

From an heuristic point of view, the Lipschitz estimate should follow from the work
of Avellaneda and Lin [4] in the extreme case when α � β. Indeed in that case, the
coe�cients oscillate faster than the boundary. Rescaling the boundary at scale 1 yields
coe�cients oscillating at scale α/β � 1. Therefore, in order to focus on the true issues
introduced by the oscillating boundary, we carry out the proof of the Lipschitz estimate in
the case of a constant coe�cients elliptic system®

−∇ ·A0∇uε = 0, x ∈ Dε(0, 1),
uε = 0, x ∈ ∆ε(0, 1).

(3.3)

Proposition 4 ([30, Proposition 13]). There exists a constant C > 0 so that for all

ψ ∈ C1,ν0
M0

, for all ε > 0, for all uε weak solution to (3.3), if

‖uε‖L∞(Dε(0,1)) ≤ 1,

then

‖∇uε‖L∞(Dε(0,1/2)) ≤ C.
Notice that C depends on d, N , M0, λ and ν0.

The proof of Proposition 4 follows the three steps compactness scheme. As above for the
interior Lipschitz bound, the main di�culty is to �nd out and then prove by contradiction
(step 1) an estimate which nicely goes through the iteration procedure (step 2). We have
noticed in the proof of the interior Lipschitz estimate that the latter may call for the
introduction of correctors. This demand also appears here when proving the second step.
The correctors deal with the oscillations of the boundary and do not require any structure
assumption on the graph. They are called boundary correctors.

The original work [30] handles the full situation with oscillating coe�cients and oscil-
lating boundary. Glueing the two extreme cases α � β and α � β together requires in
particular re�ned estimates on the boundary correctors.
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Step 1 The �rst thing to do is to identify the limit problem. This is where the bound-
edness of ψ is crucial. Indeed, since ‖εψ(·/ε)‖L∞(Rd−1) ≤ M0ε, at the limit ε → 0 the
boundary is �at. Remark that the salient information that ψ is bounded has been lost in
the �attening procedure above. Let u0 be a weak solution to®

−∇ ·A0∇u0 = 0, x ∈ (−1/4, 1/4)d−1 × (0, 1/4),
u0 = 0, x ∈ (−1/4, 1/4)d−1 × {0}. (3.4)

By classical regularity, we have for 0 < θ < 1/8∥∥∥∥∥u0(x)−
Ç
−
ˆ

(−θ,θ)d−1×(0,θ)
∂xdu

0

å
xd

∥∥∥∥∥
L∞((−θ,θ)d−1×(0,θ))

≤ C0θ
2,

where C0 > 0 does not depend on θ. Let 0 < µ < 1 and take 0 < θ < 1/8 su�ciently small
so that C0θ

2 < θ1+µ.

Assume by contradiction that there exists a sequence εk → 0, ψk ∈ C1,ν0
M0

and uεkk weak
solution to ®

−∇ ·A0∇uεkk = 0, x ∈ Dεk
ψk

(0, 1),

uεkk = 0, x ∈ ∆εk
ψk

(0, 1),

so that ‖uεkk ‖L∞(D
εk
ψk

(0,1)) ≤ 1 and

∥∥∥∥∥uεkk (x)−
Ç
−
ˆ
Dεk (0,1)

∂xdu
εk
k

å
[xd − εkψk(x′/εk)]

∥∥∥∥∥
L∞(Dεk (0,θ))

> θ1+µ. (3.5)

The uniform boundary Hölder estimate [uεkk ]
C0,µ(Dεk (0,1/2))

≤ C and Cacciopoli's inequality

give the compactness needed on uεkk to see that a subsequence converges to u0 solution of
(3.4). We skip a few technicalities; those are handled in [30]. One can then pass to the
limit in (3.5), which yields a contradiction.

Step 2 (attempt) For x ∈ Dε/θ(0, 1) and 0 < ε < ε0, we de�ne

U ε(x) :=
1

θ1+µ

®
uε(θx)−

Ç
−
ˆ
Dε(0,1)

∂xdu
ε

å
[θxd − εψ(θx′/ε)]

´
.

The �rst step implies that ‖U ε‖L∞(Dε/θ(0,1)) ≤ 1. Moreover, U ε vanishes on ∆ε/θ(0, 1).
Nevertheless,

−∇ ·A0∇U ε = − 1

θµ

Ç
−
ˆ
Dε(0,1)

∂xdu
ε

å
∇x′ ·A0∇x′

(
ψ(θx′/ε)

)
in Dε/θ(0, 1), (3.6)

which prevents us from applying the estimate of step 1 to U ε. In order to address this issue,
we have to introduce correctors in the expansion for uε, the so-called boundary correctors.

Boundary correctors The list of requirements for these correctors is that:

(1) they vanish on the oscillating boundary,

(2) they cancel out the right hand side in (3.6) and

(3) they are nicely estimated in terms of the distance to the oscillating boundary.
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For the latter, we are led to introduce a cut-o� function Θ whose purpose is to limit the
e�ect of ψ to a small layer close to the boundary. For �xed M0 > 0, let ϑ′ ∈ C∞c (Rd−1)
(resp. ϑd ∈ C∞c (R)) a cut-o� function compactly supported in (−3/2, 3/2)d−1 (resp. in
(−3M0/2, 3M0/2)), identically equal to 1 on (−1, 1)d−1 (resp. on (−M0,M0)). We de�ne
the cut-o� function Θ ∈ C∞c (Rd) by for all x′ ∈ Rd−1, yd ∈ R,

Θ(x′, yd) := ϑ′(x′)ϑd(yd).

Notice that Θ is compactly supported in (−3/2, 3/2)d−1 × (−3M0/2, 3M0/2), identically
equal to 1 on (−1, 1)d−1 × (−M0,M0) and that for all x′, x̂′ ∈ Rd−1, yd ∈ R,

|x′|, |x̂′| ≤ 1 implies Θ(x′, yd) = Θ(x̂′, yd). (3.7)

The next lemma asserts the existence of the boundary correctors.

Lemma 5 (boundary corrector, [30, Lemma 10]). For all 1/2 < τ < 1, there exists C > 0
so that for all ψ ∈ C1,ν0

M0
, for all 0 < ε < 1, the unique weak solution vε ∈W 1,2(Dε(0, 2)) of®

−∇ ·A0∇vε = ∇ ·A0∇(ψ(x′/ε)Θ(x′, xd/ε)), x ∈ Dε(0, 2),
vε = 0, x ∈ ∂Dε(0, 2),

(3.8)

satis�es the following estimate: for all x ∈ Dε(0, 3/2),

|vε(x)| ≤ Cδ(x)τ

ετ
, (3.9)

where δ(x) := xd − εψ(x′/ε).

We refer to [30, pages 19 − 23] for a proof of this Lemma. The key to estimate (3.9)
is the representation of vε via Green's kernel, an integration by parts and the following
estimates of the Green kernel (d ≥ 3): for all x, x̃ ∈ Dε(0, 3/2),

|∇2
‹Gε(x, x̃)| ≤ Cδ(x)τ

|x− x̃|d−1+τ
, for |x− x̃| ≤ ε, (3.10)

|∇2
‹Gε(x, x̃)| ≤ Cδ(x)τδ(x̃)τ

ε|x− x̃|d−2+2τ
, for |x− x̃| > ε. (3.11)

Both estimates rely on the uniform Hölder estimate and on the classical Lipschitz estimate
applied at microscale.

Step 2 (continuation) Using the bound (3.9), one can redo step 1 and show that for
0 < θ < 1/8, there exists ε0, so that for all 0 < ε < ε0,∥∥∥∥∥uε(x)−

Ç
−
ˆ
Dε(0,1)

∂xdu
ε

åî
xd − εψ(x′/ε)Θ(x′, xd/ε)− εvε(x)

ó∥∥∥∥∥
L∞(Dε(0,θ))

≤ θ1+µ.

(3.12)
Now, for x ∈ Dε/θ(0, 1), we de�ne

U ε(x) :=
1

θ1+µ

®
uε(θx)−

Ç
−
ˆ
Dε(0,1)

∂xdu
ε

åî
θxd − εψ(θx′/ε)Θ(θx′, θxd/ε)− εvε(θx)

ó´
.

Because of (3.12), we have the bound

‖U ε‖L∞(Dε/θ(0,1)) ≤ 1,
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and U ε solves ®
−∇ ·A0∇U ε = 0, x ∈ Dε/θ(0, 1),

U ε = 0, x ∈ ∆ε/θ(0, 1),

so that the estimate of step 1 can be applied. We can then show recursively that for every
integer k, for all 0 < ε < θk−1ε0, there exists a

ε
k ∈ R and V ε

k = V ε
k (x) such as

|aεk| ≤ (C/θ)[1 + θµ + . . . θ(k−1)µ],

|V ε
k (x)| ≤ (C/θ)[1 + θµ + . . . θ(k−1)µ]

δ(x)τ

ετ
,

where C does not depend on k nor on ε, and∥∥∥uε(x)− aεk
{
xd − εψ(x′/ε)Θ(x′, xd/ε)

}
− εV ε

k (x)
∥∥∥
L∞(Dε(0,θk))

≤ θk(1+µ). (3.13)

This estimate basically means that since uε vanishes on the boundary, it remains small
close to the boundary.

Step 3 Let ε > 0 be �xed. If ε > ε0, then the classical Lipschitz estimate applies. If
ε < ε0, then there exists a unique k so that θk ≤ ε/ε0 < θk−1. We have to estimate
|∇uε| in the vicinity of every point x0 ∈ Dε(0, 1/2). Let us start with the particular point
x0 = (0, x0,d) ∈ Dε(0, 1/2). There are two situations depending on wether x0 is far or
close to the boundary. In the former case when θl+1/2 < δ(x0) = x0,d− εψ(0) ≤ θl/2 with
0 ≤ l ≤ k, we are far enough from the boundary to apply a rescaled version of the interior
Lipschitz estimate (see Proposition 2) and get

‖∇uε‖L∞(B(x0,δ(x0)/4)) ≤
C

δ(x0)
‖uε‖L∞(B(x0,δ(x0)/2)).

Estimate (3.13) tells that

‖uε‖L∞(B(x0,δ(x0)/2)) ≤ Cδ(x0),

where C only depends on θ and ε0. When x0 is close to the boundary i.e. 0 ≤ δ(x0) =
x0,d − εψ(0) ≤ θk+1/2, estimate (3.13) implies that

‖uε‖L∞(Dε(0,ε/ε0)) ≤ Cε,

which together with the classical Lipschitz estimate yields

‖∇uε‖L∞(Dε(0,ε/(2ε0)) ≤
C

ε
‖uε‖L∞(Dε(0,ε/ε0)) ≤ C.

Arbitrary points x0 ∈ Dε(0, 1/2) not of the form (0, x0,d) are dealt with by translating the

origin at (x′0, 0). Notice that the translated graph ψ still belongs to C1,ν0
M0

and the estimates
above are uniform for ψ in this class.

4 Applications

4.1 Pointwise bounds on kernels and related estimates

Pointwise bounds One of the main applications of uniform Hölder and Lipschitz esti-
mates is to derive pointwise bounds on the large scale behavior of Green's and Poisson's
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kernels. Let Gα,β = Gα,β(x, x̃) be Green's kernel associated to the operator −∇·A(x/α)∇
and to the oscillating domain {xd > βψ(x′/β)}. The Poisson kernel Pα,β = Pα,β(x, x̃) is
de�ned for all x ∈ {xd > βψ(x′/β)}, for all x̃ ∈ {xd = βψ(x′/β)} by

Pα,β(x, x̃) = −
î
A∗(x̃/α)∇x̃G∗,α,β(x̃, x) · nψβ (x̃)

óT
(4.1)

where the starred quantities refer to the adjoint operator −∇ ·A∗(x/α)∇.

Proposition 6 ([30, Proposition 20 and 21]). For all d ≥ 2, for all 0 ≤ µ1, µ2 ≤ 1,
there exists C > 0, so that for all ψ ∈ C1,ν0

M0
, for all A ∈ A0,ν0, for all α, β > 0, for all

x, x̃ ∈ {xd > βψ(x′/β)}, we have

|Gα,β(x, x̃)| ≤ C log(1 + |x− x̃|), if d = 2, (4.2)

|Gα,β(x, x̃)| ≤ C

|x− x̃|d−2
, if d ≥ 3, (4.3)

and for all d ≥ 2,

|Gα,β(x, x̃)| ≤ C δ
µ1(x)δµ2(x̃)

|x− x̃|d−1
, (4.4)

|∇1G
α,β(x, x̃)| ≤ C

|x− x̃|d−1
min

®
1,

δ(x̃)

|x− x̃|

´
, |∇1∇2G

α,β(x, x̃)| ≤ C

|x− x̃|d
, (4.5)

|Pα,β(x, x̃)| ≤ Cδ(x)

|x− x̃|d
, |∇1P

α,β(x, x̃)| ≤ C

|x− x̃|d

®
1 +

δ(x)

|x− x̃|

´
. (4.6)

Notice that C depends on d, N , M0, λ and ν0, but is uniform in α, β > 0.

The proof of these bounds is standard and relies on the uniform Hölder and Lipschitz
estimates of [30]. On the one hand (4.2), (4.3) and (4.4) for 0 < µ1, µ2 < 1 follow from
Hölder's estimate, on the other hand (4.4) (for µ1 or µ2 = 1), (4.5) and (4.6) follow from
the Lipschitz estimate. Similar estimates also hold for the Green and Poisson kernels in
bounded C1,ν0 domains, by replacing δ by the distance to the boundary.

In order to show where the uniformity in α and β comes into play, we sketch the proof
of (4.4) for µ1 = 1, µ2 = 0 and d ≥ 3. The latter estimate is only better than (4.3) when
δ(x) is small with respect to |x − x̃|. Therefore, if δ(x) ≥ |x − x̃|/6, (4.4) is a simple
consequence of (4.3). Assume now that δ(x) < |x − x̃|/6. In that case, call x̄ the point
on the oscillating boundary with coordinates x̄ = (x′, βψ(x′/β)). Since Gα,β(·+ x̄, x̃) is a
weak solution to

−∇ ·A((·+ x̄)/α)∇Gα,β(·+ x̄, x̃) = 0 in Dβ
ψ(·+x̄)(0, |x− x̃|/3)

vanishing on ∆β
ψ(·+x̄)(0, |x− x̃|/3), we have

|Gα,β(x, x̃)| = |Gα,β(x, x̃)−Gα,β(x̄, x̃)|
≤ sup

z∈[x,x̄]
|∇Gε(z, x̃)||x− x̄| = sup

z∈Dβ(0,|x−x̃|/6)

|∇Gε(z + x̄), x̃)|δ(x)

≤ 6Cδ(x)

|x− x̃|
‖Gε(·+ x̄)‖L∞(Dβ(0,|x−x̃|/3)) ≤

Cδ(x)

|x− x̃|d−1
.

Here we have used the rescaled Lipschitz estimate (3.2) (true for all r > 0 thanks to the
uniformity in α and β) with r = |x− x̃|/3.
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Lp estimates Uniform Lp estimates for®
−∇ ·A(x/α)∇uα,β = f, xd > βψ(x′/β),

uα,β = g, xd = βψ(x′/β),

are immediate corollaries of the pointwise bounds on the Green and Poisson kernels.

Corollary 7 (Lp estimate for the boundary value problem). Let f = 0. For all 1 < p <∞,

there exists C > 0, so that for all ψ ∈ C1,ν0
M0

, for all A ∈ A0,ν0, for all α, β > 0, for all

g ∈ Lp({xd = βψ(x′/β)}), uα,β the solution of (4.1) given by the Poisson integral

uα,β(x) =

ˆ
x̃d=βψ(x̃′/β)

Pα,β(x, x̃)g(x̃)dx̃

satis�es

‖uα,β‖Lp({xd>βψ(x′/β)}) ≤ C‖g‖Lp({xd>βψ(x′/β)}).

Corollary 8 (gradient Lq estimate). Let g = 0. For all κ > 0, for all 1 ≤ p ≤ d + κ,
there exists C > 0, so that for all ψ ∈ C1,ν0

M0
, for all A ∈ A0,ν0, for all α, β > 0, for all

f ∈ Lq({xd > βψ(x′/β)}), the solution uα,β to (4.1) given by the Green integral

uα,β(x) =

ˆ
x̃d>βψ(x̃′/β)

Gα,β(x, x̃)f(x̃)dx̃

satis�es

‖∇uα,β‖Lq({xd>βψ(x′/β)}) ≤ C‖f‖Lp({xd>βψ(x′/β)}),

with 1/q = 1/p− 1/(d+ κ).

These estimates have been proved by Avellaneda and Lin in bounded non oscillating
domains: see [4, Theorem 3] for Corollary 7 and [4, Theorem 4] for Corollary 8. The
boundary Lp estimate follows from the bound (4.6), whereas the gradient bound relies on
estimate (4.5). Generalizing such estimates to rougher boundaries, Lipschitz for instance
instead of C1,ν0 is a di�erent story and requires other tools [32, 31].

We also get an Agmon-Miranda maximum principle for systems.

Corollary 9 (maximum principle for systems, [30, Lemma 23]). There exists C > 0, such
that for all ψ ∈ C1,ν0

M0
, for all A ∈ A0,ν0, for all α, β > 0, for all g ∈ L∞(∆β(0, 1)), for all

weak solution vα,β = vα,β(x) ∈ L2(Dβ(0, 1)) to®
−∇ ·A(x/α)∇vα,β = 0, x ∈ Dβ(0, 1),

vα,β = g, x ∈ ∆β(0, 1),

we have

‖vα,β‖L∞(Dβ(0,1/2)) ≤ C
¶
‖vα,β‖L2(Dβ(0,1)) + ‖g‖L∞(∆β(0,1))

©
.

Notice that C depends on d, N , M0, λ and ν0.

Expansions of Green and Poisson kernels This paragraph deals with systems with
non oscillating boundary. In other words, we take for the moment α = ε and β = 1.
Relying on two scale asymptotic expansions and on uniform estimates, Avellaneda and
Lin have been able to derive expansions for the fundamental solution Gε = Gε(x, x̃) of
−∇ · A(x/ε)∇ valid for |x − x̃| � 1: see [9], Lemmas 1, 2, 3 and their corollaries. This
work has inspired the derivation of an expansion for Poisson kernel in the half-space [36,
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Theorem 5.3]. Kenig, Lin and Shen [29] have obtained several (near) optimal expansions
for Green's and Poisson's kernels, as well as some of their derivatives in bounded domains.
Their work includes in particular a substantial improvement of a result by Avellaneda
and Lin [8, Theorem 1] on the approximation of Poisson's kernel: the Poisson kernel P ε

associated to −∇·A(x/ε)∇ and Ω (su�ciently smooth, at least C2,η, η > 0) can be written
as

P ε(x, x̃) = P 0(x, x̃)ωε(x̃) +Rε(x, x̃),

where the remainder term is estimated as follows

|Rε(x, x̃)| ≤ Cε log(ε−1|x− y|+ 1)

|x− x̃|d
.

The factor ωε(x̃) is explicit and accounts for the high frequency oscillation of the Poisson
kernel P ε, whereas P 0 is the Poisson kernel associated to the homogenized operator−∇·A∇
and Ω. We refer to [29, Theorem 3.8] for more details and the expression for ωε.

4.2 Homogenization of boundary layers

Much of the recent progress in the analysis of systems of the type of (1.3) with oscillating
Dirichlet boundary data has been achieved by studying®

−∇ ·A(y)∇vbl = 0, y · n > 0,
vbl = ϕ(y), y · n = 0,

(4.7)

posed in the half-space {y · n > 0}. As underlined in the introduction, this system comes
from blowing-up (1.3) in the vicinity of a point of the boundary ∂Ω. So as to identify a
possible homogenized boundary condition ϕ for (1.3), one has to investigate the behavior
of vbl far from the boundary, i.e. when y · n→∞. Depending on whether n ∈ Sd−1

(RAT) has rational coordinates, i.e. n ∈ RQd,

(DIV) satis�es a small divisors assumption, i.e. there exists c, τ > 0 such as for all
ξ ∈ Zd \ {0}, for all i = 1, . . . d− 1,

|ni · ξ| ≥ C |ξ|−d−τ (4.8)

where (n1, . . . nd−1, n) forms an orthogonal basis of Rd,

(GEN) or is an arbitrary vector /∈ RQd, which does not satisfy (DIV),

the asymptotics of vbl may be very di�erent.

The system (4.7), existence and asymptotics, can be analysed by relying only on ener-
getical arguments (Saint-Venant estimates) in the cases (RAT) (see [34]) and (DIV) (see
[23]). In both cases one can show that the (unique, if some decay of the gradient is pre-
scribed) solution vbl of (4.7) converges very fast to a constant V∞ ∈ RN , when y ·n→∞.
For a precise statement, see the original references. To gain an insight into the behavior of
vbl in the general case (GEN), as well as a precise description of the dependence of V∞

on n, the starting point is the representation formula of vbl in terms of Poisson's kernel
P = P (y, ỹ) for the operator −∇ ·A(y)∇ and the domain {y · n > 0},

vbl(y) =

ˆ
ỹ·n=0

P (y, ỹ)ϕ(ỹ)dỹ.
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Estimates on the Green and Poisson kernels are crucial in the work of Gérard-Varet
and Masmoudi [24, section 2], where the function V∞ = V∞(n) is studied for n satisfying
(DIV). They prove the homogenization of (1.3) in the case of smooth uniformly convex
domains Ω. Along with the convergence, their main result [24, Theorem 1] gives a rate
of convergence in L2(Ω) between uεbl and its homogenized limit. In dimension d = 2,
the assumption of uniform convexity makes it possible to approximate the domain Ω by
polygonal domains with slopes satisfying (DIV). In particular, the uniform convexity rules
out the possibility that ∂Ω has �at parts with normals n satisfying (GEN).

The interaction between the microstructure and the boundary has been analysed in full
generality in the paper [36]. The asymptotics of vbl have been investigated in the general
case when n neither satis�es (RAT) nor (DIV). The following result is proved: for all n
satisfying (GEN), there exists V∞ ∈ RN , so that

vbl(y)
y·n→∞−→ V∞,

locally uniformly in the tangential variable. Moreover, explicit examples show that the
convergence can be almost arbitrarily slow. The key to the proof of this result is to
establish an expansion of the Poisson kernel P (y, ỹ) for |y − ỹ| � 1.

Theorem 10 ([36, Theorem 5.3]). There exists an explicit kernel P exp = P exp(y, ỹ) with

ergodicity properties along the boundary, and a number η > 0 so that for all y, ỹ ∈ Rd,
y · n > 0, ỹ · n = 0,

|P (y, ỹ)− P exp(y, ỹ)| ≤ C

|y − ỹ|d−1+η
. (4.9)

Using this theorem, it is then possible to pass to the limit in

vbl(y) =

ˆ
ỹ·n=0

P exp(y, ỹ)ϕ(ỹ)dỹ +

ˆ
ỹ·n=0

{P (y, ỹ)− P exp(y, ỹ)}ϕ(ỹ)dỹ

when y · n → ∞. The �rst term converges to a constant V∞ ∈ RN thanks to ergodicity
on the boundary, while the second term tends to 0 thanks to (4.9).

The proof of Theorem 10 uses in a crucial way the uniform boundary Lipschitz estimate
[4, Lemma 20]. Let x̃ be �xed on the boundary, and x ∈ Rd so that x · n > 0 and
|x − x̃| = 1. The main idea, in the spirit of the paper [9] on large scale expansions of
fundamental solutions, is to 2-scale expand the Green kernel G∗,ε(·, x) associated to the
operator −∇ ·A∗(x/ε)∇ and to the domain {x · n > 0}:

G∗,ε(·, x) = Gε,exp(·) +Rε(·).

The remainder Rε then satis�es the system®
−∇ ·A (z/ε)∇Rε = F ε, z ∈ D(x̃, 1/2),

Rε = Hε, z ∈ ∆(x̃, 1/2).

By the uniform Lipschitz estimate, we get

‖∇Rε‖L∞(D(x̃,1/4)) ≤ C
¶
‖Rε‖L∞(D(x̃,1/2)) + ‖F ε‖Ld+κ(D(x̃,1/2)) + ‖Hε‖C1,µ(∆(x̃,1/2))

©
,

where D(x̃, r) := B(x̃, r)∩{z ·n > 0}. Each term on the right hand side can be showed to
be of order O(εη), for some η > 0. Therefore, by the de�nition of the Poisson kernel (4.1),∣∣∣P ε(x, x̃)− P 0(x, x̃, x̃/ε)− εP 1(x, x̃, x̃/ε)− ε2P 2(x, x̃, x̃/ε)

∣∣∣ . εη,

which yields Theorem 10 by rescaling in the variables y = x/ε and ỹ = x̃/ε.
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Toward oscillating half-spaces We have in mind to extend the previous analysis to
the system ®

−∇ ·A(y)∇v = 0, yd > ψ(y′),
v = v0(y), yd = ψ(y′),

(4.10)

posed in the oscillating half-space {yd > ψ(y′)}, with ψ ∈ C1,ν0
M0

. Given that we have a
uniform Lipschitz estimate for domains with oscillating boundaries (see Theorem 3), is it
possible to expand in a similar way the Poisson kernel associated to −∇ · A(y)∇ and to
the domain {yd > ψ(y′)}?

We take α = β =: ε. Thanks to local error estimates in L∞, we have been able to
prove:

Theorem 11 ([30, Theorem 22]). There exists C > 0, so that for all ψ ∈ C1,ν0
M0

, for all

A ∈ A0,ν0, for all ε > 0, for all x, x̃ ∈ {xd > εψ(x′/ε)},

|Gε(x, x̃)−G0(x, x̃)| ≤ Cε

|x− x̃|d−1
.

where G0 is the Green kernel associated to the homogenized operator −∇ · A∇ and to the

�at space Rd+. Notice that C depends on d, N , M0, λ and ν0.

Of course, this statement translates into a result in the fast variables: for all y, ỹ ∈
{yd > ψ(y′)},

|G(y, ỹ)−G0(y, ỹ)| ≤ C

|y − ỹ|d−1
.

Let us describe in a loose way the limitations which prevent us from going further in
the expansion in general. For �xed x, the �rst term G0(x, ·) in the asymptotic expansion
of Gε does not vanish on the oscillating boundary, and worse it is highly oscillating. These
oscillations lead to bad Lipschitz estimates, singular in ε.

To overcome this problem, an idea in the spirit of the works on oscillating boundaries
in �uid mechanics (see for instance among a lot of other papers [21, 22]) is to replace
the oscillating boundary by a �at one with an ad hoc boundary condition. This boundary
condition may not necessarily be of Dirichlet type, as was �rst taken for G0 above. Another
boundary condition on the �at boundary (for example of Navier type) may yield another
zero-order term, which better approximates the �rst-order derivatives of Gε than does G0.
One of the issues is that determining the right boundary condition involves being able to
study the behavior of vbl far from the boundary.

Studying the asymptotics of vbl requires in turn some structure (periodicity, quasiperi-
odicity or stationary ergodicity for example) on the oscillations of the boundary. Consider
the simple problem ®

−∆v = 0, y2 > 0,
v = v0, y2 = 0,

(4.11)

posed in R2
+, with boundary data v0 ∈ L∞(R)∩C0(R) non decaying at space in�nity. The

formula

v(y1, y2) =

ˆ
R

y2

π((t− y1)2 + y2
2)
v0(t)dt

gives a bounded solution to (4.11). This solution is the unique solution of (4.11) in the
class of bounded functions. Gérard-Varet and Masmoudi [22, Proposition 11] point out an
example of a v0 ∈ L∞(R) (one can smooth it to be in C∞(R) as well), so that v(0, y2) does
not converge when y2 → ∞. This boundary data v0 for which convergence does not hold
lacks ergodicity properties, which would ensure the convergence of the averages v(0, y2)
when the �time� y2 tends to ∞.
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