
FREE BOUNDARY REGULARITY OF VACUUM STATES FOR
INCOMPRESSIBLE VISCOUS FLOWS IN UNBOUNDED DOMAINS

CHRISTOPHE PRANGE AND JIN TAN

Abstract. In the well-known book of Lions [Mathematical topics in fluid mechanics.
Incompressible models, 1996], global existence results of finite energy weak solutions of
the inhomogeneous incompressible Navier-Stokes equations (INS) were proved with-
out assuming positive lower bounds on the initial density, hence allowing for vacuum.
Uniqueness, regularity and persistence of boundary regularity of density patches were
listed as open problems. A breakthrough on Lions’ problems was recently made by
Danchin and Mucha [The incompressible Navier-Stokes equations in vacuum, Comm.
Pure Appl. Math., 72 (2019), 1351–1385] in the case where the fluid domain is ei-
ther bounded or the torus. However, the case of unbounded domains was left open
because of the lack of Poincaré-type inequalities. In this paper, we obtain regularity
and uniqueness of Lions’ weak solutions for (INS) with only bounded and nonnegative
initial density and additional regularity only assumed for the initial velocity, in the
whole-space case Rd , d = 2 or 3. In particular, our result allows us to study the
evolution of a vacuum bubble embedded in an incompressible fluid, as well as a patch
of a homogeneous fluid embedded in the vacuum, which provides an answer to Lions’
question in the whole-space case.

1. Introduction

In the present paper, we are concerned with the Inhomogeneous incompressible
Navier-Stokes equations (INS) in the whole-space Rd (with d = 2, 3)

(INS)


∂tρ+∇ · (ρu) = 0,

∂t(ρu) +∇ · (ρu⊗ u) +∇P = ν∆u,

∇ · u = 0.

in the presence of vacuum. The unknowns are the velocity field u = u(t, x), the density
ρ = ρ(t, x) and the pressure P = P (t, x) and ν > 0 is the viscosity constant.

The initial values are prescribed as follows:

(1.1) ρ|t=0 = ρ0, ρu|t=0 = m0.

It will be assumed that the initial density ρ0 is nonnegative and bounded in L∞(Rd),
but not necessarily bounded from below by a positive constant. This allows us to
study, for instance, the evolution of a vacuum bubble embedded in an incompressible
fluid, as well as of a patch of a homogeneous fluid embedded in the vacuum. Let us
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mention that this problem may be reformulated as a free-boundary problem. Lions
in [42, page 34] raised the following question about the persistence of the interface
regularity through the evolution:

[In the case of a density patch ρ = 1D(t) , the system] (INS) can be
reformulated as a somewhat complicated free boundary problem. It is
also very natural to ask whether the regularity of D is preserved by the
time evolution.

The question asked by Lions was solved by Danchin and Mucha in [16] in the case
of bounded domains or the Torus, relying in particular on Poincaré-type inequalities.
Hence, these authors mention the whole-space case as an open problem:

[T]he generalization to unbounded domains (even the whole space) within
our approach [is] unclear as regards global-in-time results.

One of the main motivations in this paper is to address that question. We give a
positive answer, see Theorem C below.

1.1. A brief state of the art.
Global-in-time finite-energy weak solutions. Since the pioneering works by Leray [35]
and Ladyzhenskaya [33] on the incompressible homogeneous Navier-Stokes equations,
the existence and uniqueness issues of solutions for the inhomogeneous system (INS)
has been intensively investigated. Finite-energy weak solutions in the spirit of ‘Leray
solutions’ were built first by Kazhikov et al. [32, 5], in the case when ρ0 is bounded
away from 0. This result was extended by Simon [47] allowing ρ0 to vanish, in the
case of bounded domains. Then, Lions [42] (see also Desjardins [22, 23]) considered
the so-called density-dependent Navier-Stokes equations, i.e. the case where viscosity
ν depends on density ρ, by using general results on transport equations obtained in
DiPerna and Lions’ work [25]. As a consequence, in the whole-space Rd , d = 2 or 3, it
is proved in Lions’s book [42], see Theorem 1.1 below, that global weak solutions such
that ρ is bounded and u→ u∞ as |x| → ∞, for all t ≥ 0, exist provided that

(1.2)


ρ0 ≥ 0 a.e. in Rd, ρ0 ∈ L∞(Rd),

m0 ∈ L2(Rd), m0 = 0 a.e. on {ρ0 = 0},
|m0|2/ρ0 ∈ L1(Rd).

Because of the fact that the momentum equation is degenerate when there is vacuum,
Lions needs to assume in addition to (1.2), one of the following three conditions:
almost No Vaccum

(aNV) (1/ρ0) 1ρ0<δ0 ∈ L1(Rd), for some δ0 > 0,

or Vacuum Bubble

(VB) (ρ− ρ0)+ ∈ Lp(Rd), for some ρ ∈ (0,∞), p ∈ (d/2,∞),
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or Far-Field Vacuum
if d = 2,

w

R2
ρp0 〈x〉2(p−1)(log〈x〉)r dx <∞

for some p ∈ (1,+∞] and r > 2p− 1

if d = 3, ρ0 ∈ L
3
2
,∞(R3),

(FFV-1)

where 〈x〉 := (e+ |x|2)1/2.
It is important to note that above three conditions allow several physically interesting

cases. For example, condition (aNV) allows the density to vanish on zero-measure sets,
condition (VB) allows vacuum bubbles, while condition (FFV-1) allows density patches.

Let us give a precise definition of a weak solution to the Cauchy problem associated
to system (INS). The following definition and result are stated in the book [42] of
Lions.

Definition 1.1 ([42, Chapter 2]). Let T > 0. We say that (ρ, u) is a finite-energy
weak solution of system (INS) with the initial conditions (1.2), if (ρ, u) satisfies the
following properties:

ρ ≥ 0, ρ ∈ L∞((0, T )× Rd), ρ ∈ C([0, T ];Lploc(R
d)) for all 1 ≤ p <∞,

ρ|u|2 ∈ L∞(0, T ;L1(Rd)), and

u ∈ L2(0, T ; D̃1,2(R2)) if d = 2 or u ∈ L2(0, T ;D1,2(R3)) if d = 3,

where the spaces

D̃1,2(R2) := {z ∈ H1
loc(R2);∇z ∈ L2(R2)}, D1,2(R3) := {z ∈ L6(R3);∇z ∈ L2(R3)},

are endowed with the norms

‖z‖D̃1,2(R2) := ‖∇z‖L2(R2), ‖z‖D1,2(R3) := ‖z‖L6(R3) + ‖∇z‖L2(R3).

If (aNV) or (VB) hold, we require in addition that u ∈ L2((0, T ) × Rd). Moreover,
(ρ, u) satisfies system (INS) in the sense of distributions in (0,∞) × Rd and the fol-
lowing energy inequality for a.e. t ∈ (0, T )

(1.3)
w

Rd
ρ(t, x)|u(t, x)|2 dx+ 2ν

w t

0

w

Rd
|∇u(s, x)|2 dxds ≤

w

Rd
|m0(x)|2

ρ0(x)
dx.

The solution (ρ, u) is a global-in-time finite-energy weak solution of system (INS) if
the properties stated above hold for all T ∈ (0,∞).

Theorem ([42, Theorem 2.1]). Assume that the initial data (ρ0, u0) satisfies condition
(1.2) and one of the conditions (aNV)-(FFV-1), then there exists a global weak solution
(ρ, u) of system (INS) in the sense of Definition 1.1. Furthermore, one has for all
0 ≤ α0 ≤ β0 <∞

meas{x ∈ Rd | α0 ≤ ρ(t, x) ≤ β0} is independent of t ≥ 0.(1.4)

And if ρ0 − ρ∞ ∈ Lp(Rd) for some 1 ≤ p < ∞, ρ∞ ∈ [0,∞), then ρ − ρ∞ ∈
C([0,∞);Lp(Rd)) and ‖ρ − ρ∞‖Lp(Rd) is independent of t ≥ 0. Also, if ρ ≡ ρ̄ for

some ρ̄ ∈ [0,∞), then ρ0 ≡ ρ̄ on [0,∞)× Rd.
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The uniqueness of global weak solutions for system (INS) remains an open question
even in the 2D case, although several weak-strong uniqueness results were established
e.g. in Lions [42] and Germain [29].

Uniqueness in the absence of vacuum. Let us recall some recent developments on the
unique solvability of the inhomogeneous incompressible Navier-Stokes equations (INS)
in the absence of vacuum. Since the density is bounded below away from zero, this case
is rather close to the homogeneous flows (i.e. density is constant). Strong solutions
were first considered by Ladyzhenskaya and Solonnikov [34] in the bounded domain
case, whenever initial velocity and density are smooth enough and away from vacuum.

After these early works, a number of papers were devoted to the study of strong
solutions to system (INS), with particular interest in classes of initial data generating
regular unique solutions. Here, an important feature for system (INS) is the scal-
ing invariance: if (ρ, u, P ) is a solution associated to the initial data (ρ0, u0), then
(ρ, λu, λ2P )(λ2t, λx) is a solution associated to (ρ0, λu0)(λx), for all λ > 0. In the
critical1 regularity framework, the local and global existence results were first obtained
by Danchin [12] in the case when initial density has small variation, but still not in-
cluding patches of density. Abidi [1] and Abidi and Paicu [3] extended these results to
the case with variable viscosity in critical Besov spaces. Then, many efforts focused on
removing these smallness assumptions on the density, see for example [13, 7, 4, 48, 2].

For discontinuous densities, Danchin and Mucha [14] first proved well-posedness
results for data including initial density patches (that have small variation) by a La-
grangian approach. Later, Paicu, Zhang and Zhang [46] (see also [15]) established
global unique solvability with only bounded initial density, in addition bounded from
below; see also further developments [31, 19, 49, 21] on initial velocity in critical func-
tional spaces. These results enable initial density of the type ρ0 = ρ1 1Ω + ρ2 1Ωc ,
where ρ1, ρ2 are positive constants, Ω is a bounded domain in Rd and 1Ω is the
characteristic function of Ω. In connection with Lions’ question on the persistence of
boundary regularity of Ω, we refer to the works [20, 27, 39, 40, 41, 28, 45].

Uniqueness in the presence of vacuum. Concerning strong solutions allowing vacuum,
local well-posedness was proved by Choe and Kim [10] and Cho and Kim [9] under
compatibility conditions. Later that condition was removed by Li [36]. Recently, the
work of Craig, Huang and Wang [11] and Lü, Shi and Zhong [43] established global
strong solutions. All these results allow compactly supported initial densities, but still
need to be smooth enough so that discontinuous initial densities are not allowed.

A breakthrough on the global unique solvability for system (INS) with only bounded
and nonnegative initial density was made very recently by Danchin and Mucha [16] in
the case where the fluid domain is either bounded or the torus. We also mention the
stability result [18] of the density patches problem after the paper [16].

Finally, let us briefly recall the main ideas from [16] for handling vacuum in the two-
dimensional case. In order to obtain H1(T2) regularity for the velocity the authors
of [16] test the momentum equation by ∂tu. It appears that the only difficult term is

1A functional space for the data (ρ0, u0) or for the solution (ρ, u) is said to be critical if its norm
is invariant under the natural scaling of (INS).
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‖√ρu · ∇u‖2
L2(T2). More precisely, if the density contains regions of vacuum one does

not have obvious control of ‖√ρu‖Lp(T2) for some p > 2, and this also reveals the lack
of lower-order bound for the velocity. However, by taking advantage of the following
Desjardins interpolation inequality (see [24, 16]):

(1.5)
(w

T2
ρ|u|4 dx

)1/2

≤ C‖√ρu‖L2(T2) ‖∇u‖L2(T2) · ln1/2

(
e+
‖ρ−M‖2

L2(T2)

M2
+
ρ∗‖∇u‖2

L2(T2)

‖√ρu‖2
L2(T2)

)
,

which is an improvement of the well-known Ladyzhenskaya inequality, it turns out
that the H1(T2) norm of the velocity is bounded globally-in-time by its initial values.
Above, M := ‖ρ0‖L1(T2) represents the total mass. Moreover, thanks to the Poincaré
inequality

‖u− ū(t)‖L2(T2) ≤ C‖∇u‖L2(T2) with ū(t) :=
1

|T2|

w

T2
u(t, x) dx,(1.6)

and the conservation laws of mass and momentum, one has u ∈ L∞(R+;L2(T2)).
Unfortunately, neither (1.5) nor (1.6) is valid in the whole-space case. This cre-

ates significant difficulties to handle vacuum in our setting, especially for the far-field
vacuum in the two-dimensional case. Moreover, the roughness of the density causes
additional difficulties for the uniqueness issue. Indeed, we can only perform estimates
in low regularity spaces for the following degenerate equation

ρ(∂tδu+ u · ∇δu)︸ ︷︷ ︸
degenerate when there is vacuum

+∇δP − ∆δu = −δρ ˙̄u︸ ︷︷ ︸
loss of one derivative already

−ρδu · ∇ū;

see more remarks in the Subsection 1.4.

1.2. Main results. The main goal of the present paper is to prove regularity and
uniqueness results of weak solutions for system (INS) with only bounded and nonnega-
tive initial density. Hence our results are extensions to the whole-space of the results of
Danchin and Mucha [16] (bounded domains or the Torus). We assume the additional

regularity D̃1,2(R2) or D1,2(R3) for the initial velocity.

Let us now state our main results. We first address the two-dimensional case.

Theorem A (existence and uniqueness in 2D). Consider any initial data (ρ0, u0)
satisfying (1.2) such that ∇u0 ∈ L2(R2) and ∇·u0 = 0. Assume that for some constant
ρ∗ > 0,

(1.7) 0 ≤ ρ0 ≤ ρ∗.

Then, there are two cases.

. Case 1: ρ0 satisfies either (aNV) or (VB).

There exists a unique global-in-time solution (ρ, u) for the Cauchy problem of sys-
tem (INS) supplemented with the initial data (ρ0, u0), in the sense of Definition 1.1,
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satisfying in addition the following regularity properties:

0 ≤ ρ ≤ ρ∗, u ∈ L∞(R+;H1(R2)),
√
ρut, ∆u, ∇P ∈ L2(R+ × R2),

and for any T > 0,
√
ρtut ∈ L∞(0, T ;L2(R2)), ∇(

√
tut) ∈ L2((0, T )× R2),

∇2(
√
tu), ∇(

√
tP ) ∈ Lq(0, T ;Lr(R2)), for all r ∈ [2,∞), q ∈ [2, 2r/(r − 2)).

Moreover, we have2 ∇u ∈ L1
loc(R+;L∞(R2)).

. Case 2: neither (aNV) nor (VB) are satisfied.

There still exists a unique global-in-time solution (ρ, u) for the Cauchy problem of
system (INS) supplemented with the initial data (ρ0, u0), in the sense of Definition
1.1, which satisfies3

0 ≤ ρ ≤ ρ∗, u ∈ L∞loc(R+ × R2), ∇u ∈ L∞(R+;L2(R2)),
√
ρu̇, ∆u, ∇P ∈ L2(R+ × R2),

√
ρtu̇ ∈ L∞(R+;L2(R2)), ∇(

√
tu̇) ∈ L2(R+ × R2),

and for any T > 0,

∇2(
√
tu), ∇(

√
tP ) ∈ Lq(0, T ;Lr(R2)), for all r ∈ [2,∞), q ∈ [2, 2r/(r − 2)),

and
√
ρu̇, ∆u, ∇P ∈ L∞(0, T ;L2(R2)), ∇u̇ ∈ L2(0, T ;R2),

provided that (ρ0, u0) additionally satisfies the following Far-Field Vacuum conditions4

x̄αρ0 ∈ L1(R2) ∩ L∞(R2) for some α > 1 with x̄ := 〈x〉 (ln〈x〉)2(FFV-2)

and the Compatibility condition

−∆u0 +∇P0 =
√
ρ0g, for u0 ∈ L2(R2), ∇u0 ∈ L1(R2), g ∈ L2(R2).(Compa)

Moreover, we have ∇u ∈ L1
loc(R+;L∞(R2)).

Next, we state our result in the three-dimensional case.

Theorem B (existence and uniqueness in 3D). Consider any initial data (ρ0, u0)
satisfying (1.2) such that u0 ∈ D1,2(R3), ∇ · u0 = 0 and ρ0 satisfies (1.7). Then
system (INS) supplemented with initial data (ρ0, u0) admits a unique solution (ρ, u)
on the time interval (0, T0), in the sense of Definition 1.1, satisfying in addition the
following regularity properties:5

0 ≤ ρ ≤ ρ∗, u ∈ L∞(0, T0;D1,2(R3)),
√
ρut, ∆u ∈ L2((0, T0)× R3),

P ∈ L2(0, T0;D1,2(R3)), ∇u ∈ L1(0, T0;L∞(R3)),
√
ρtut ∈ L∞(0, T0;L2(R3)),

√
tut ∈ L2(0, T0;D1,2(R3)),

∇2(
√
tu), ∇(

√
tP ) ∈ Lq(0, T0;Lr(R3)), for all r ∈ [2, 6], q ∈ [2, 4r/(3r − 6)],

2This L1
tLipx regularity is essential not only for the uniqueness part of the statement, but also for

Theorem C below.
3Here and elsewhere in the paper u̇ denotes the convective derivative, i.e. u̇ = (∂t + u · ∇)u .
4Notice that the parameter α > 1 in (FFV-2) is fixed throughout the paper.
5The L1

tLipx regularity below is essential for Theorem C.
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where T0 := cν3

ρ3
∗‖∇u0‖4

L2(R3)

for some universal constant c. Finally, there exists a univer-

sal constant c0 > 0 such that if

ρ
3
2
∗ ‖
√
ρ0u0‖L2(R3)‖∇u0‖L2(R3) ≤ c0ν

2,(1.8)

then the local-in-time solution can be extended globally-in-time.

Remark 1.2. The initial condition
√
ρ0u0,∇u0 ∈ L2(Rd) together with assumption

(aNV) or (VB) imply that u0 ∈ L2(Rd), d = 2 or 3. Under (aNV) or (VB), there
exists a positive constant C∗ depending only on the factors in condition (aNV) or (VB)
such that on the time interval (0,∞) (d = 2) and on the life-span [0, T∗) of the solution
in Theorem B (d = 3), inequality (A.6) implies

‖u(t, ·)‖L2(Rd) ≤ C∗
(
‖√ρu(t, ·)‖L2(Rd) + ‖∇u(t, ·)‖L2(Rd)

)
.(1.9)

In the two-dimensional far-field vacuum case, i.e. under (FFV-2) and (Compa), we
also have u0 ∈ L2(R2) by assumption. However, we cannot show that u(t, ·) ∈ L2(R2).
Indeed, instead of the interpolation inequality, we have the weighted estimate (A.3).

As a by-product, we obtain the following result, which give a positive answer to
Lions’ question ([42, page 34], see above in the preamble) in the whole-space case. As
mentioned above the case of bounded domains or the Torus was solved in [16].

Theorem C (solution to Lions’ problem). Assume γ ∈ (0, 1) if d = 2, and γ ∈ (0, 1
2
)

if d = 3. Let Ω0 ⊂ Rd be a bounded simply connected domain with boundary ∂Ω0 ∈ C1,γ .
Suppose that the initial velocity satisfies all the conditions in Theorem A or Theorem
B, and initial density

ρ0(x) = 1− 1Ω0(x) or ρ0(x) = 1Ω0(x), x ∈ Rd.

Then for each case the unique global solution (ρ, u) of system (INS) provided by previ-
ous theorems satisfies, respectively,

ρ(t, x) = 1− 1Ωt(x) or ρ(t, x) = 1Ωt(x) with ∂Ωt ∈ C1,γ,

where Ωt := X(t,Ω0) and X is the flow associated to the velocity u, that is, the unique
solution to

X(t, y) = y +
w t

0
u(s,X(s, y)) ds, y ∈ Rd.

Remark 1.3. Here, contrary to Theorem A and Theorem B, only one bubble/patch is
allowed. As a consequence, the case of multiple bubbles/patches is open.

1.3. A few remarks on the main results.
Main novelties. First, our results settle the uniqueness question for the difficult two-
dimensional system in the presence of far-field vacuum. Notice that this is a novelty
of the whole-space case because in the bounded domain and Torus case treated previ-
ously by Danchin and Mucha [16] there is no far-field vacuum. Notice that the far-field
vacuum case is not accessible by the methods of [16]. Indeed, our work seems to be the
first unique solvability result concerning (INS) in unbounded domains supplemented
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with merely bounded densities that can contain vacuum. Moreover, the strategy fol-
lowed in the current paper maybe adapted to the half-space case [19], which remains
an interesting problem in the field.

Second, let us stress that in Theorem A and Theorem B, the density is bounded but
does not satisfy any smoothness assumption. Notice that this is not the case of other
works concerned with the whole-space. For example, in [43] the initial density satisfies
the condition

x̄αρ0 ∈ L1(R2) ∩H1(R2) ∩W 1,p(R2), p > 2,

while in [9] the authors assume that ρ0 ∈ W 1,p(Rd), with p > d , d = 2 or 3. These
conditions do not allow for non smooth densities with jump discontinuities like patches
or vacuum bubbles.

Third, we emphasize that in both theorems, Theorem A and Theorem B, we con-
struct finite-energy weak solutions in the sense of Definition 1.1. These solutions have
additional regularity properties that follow from the assumption that the initial veloc-

ity belongs to the spaces D̃1,2(R2) or D1,2(R3). In this framework, we can prove the
uniqueness of the solutions that we construct. Notice that we do not rely on Lions’
theorem of existence of finite-energy weak solutions (Theorem 1.1 above), but prove
the existence of the solutions with the properties stated above, see Section 2 for the
existence part of Theorem B in the three-dimensional case, and see Section 3 for the
existence part of Theorem A in the two-dimensional case. Finally, let us also remark
that condition (FFV-1) is not needed neither in 2D nor 3D. In 2D, the far-field vacuum
condition (FFV-1) is replaced by the condition (FFV-2) and (Compa).

Some further estimates. We state here certain further boundedness properties for the
velocity that can be obtained from the estimates of the paper.

In 3D under (aNV) or (VB), we already know, see Theorem B and Remark 1.2 that
u ∈ L∞t L2

x on the life-span of the solution. This in combination with the techniques of
the paper and the following compatibility assumption

−∆u0 +∇P0 =
√
ρ0g, for g ∈ L2(R2).(Compa-3D)

gives that u ∈ L∞t,x on the life-span of the solution.
In 2D under (aNV) or (VB), we already know, see Theorem A and Remark 1.2

that u ∈ L∞(0,∞;L2(R2)). Combining this with the assumption (Compa) gives that
u ∈ L∞(R+ × R2). In the case when neither (aNV) nor (VB), we get at best the
weighted-boundedness of the velocity

(1.10) sup
t∈[0,T ]

‖x̄−bu(t, ·)‖L∞(R2) <∞,

see Proposition 3.8 under (FFV-2) and (Compa).

1.4. Main difficulties and strategy for the proofs. First of all, let us point to
the main difficulties. Those emerge from the facts that: (i) the density is rough (our
analysis includes density patches and vacuum bubbles) and (ii) the density may vanish
on some part of Rd .
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Dealing with the vacuum. If there is vacuum at initial time, the velocity equation is
degenerate and it becomes particularly difficult to gain control of the velocity itself. It is
important to note here that there is an essential difference between the two- and three-
dimensional cases. In the three-dimensional case, see Theorem B, we can propagate
the assumption that u0 ∈ D1,2(R3) and hence show that u ∈ L∞((0, T0);D1,2(R3)).
Hence u ∈ L∞((0, T0);L6(R3)) by Sobolev’s embedding. In the two-dimensional case
in the presence of vacuum, the quantity that is naturally controlled by the energy
estimate (1.3) is

√
ρu , which generally does not ensure that the velocity u ∈ Lp(R2)

for some p ∈ [1,∞] . Hence, one needs to find a way to control u from ‖√ρu(t, ·)‖L2(R2)

and ‖∇u(t, ·)‖L2(R2) . Such estimates can be proved, see Appendix A, under specific
assumptions that control the size of the vacuum region and the behavior of the density
near the vacuum region. In the most favorable case, i.e. condition (aNV) or (VB), one
can show a direct interpolation estimate for the L2 norm of the velocity in terms of
‖√ρu(t, ·)‖L2(R2) and ‖∇u(t, ·)‖L2(R2) , see Proposition A.6. In the case of the far-field
vacuum assumption, which is the most difficult case handled in our work, one can only
show an estimate for weighted Lm norms of the velocity, m ≥ 2, see Proposition A.4.

The compatibility condition for the far-field vacuum case. A compatibility condition in
the spirit of (Compa) first appeared in the works [9, 10]. Roughly speaking, such a
condition boils down to assuming that

√
ρ∂tu belongs to L2(R2) at initial time. The

compatibility condition was removed in the recent papers [36, 43]. In these works the
existence and uniqueness of strong solutions is proved. However, without a compatibil-
ity condition, one is unable to infer certain information, such as continuity in time, on
the velocity near initial time. One barely has time weighted estimates on the velocity.

To handle the two-dimensional far-field vacuum (Theorem A (Case 2)), which is the
most difficult case, we show persistence of the initial condition (FFV-2). Doing so, we
can only obtain bounds for ρu and time-weighted estimates of u . Condition (Compa)
is then crucial to get the space-weighted boundedness of the velocity near initial time,
see (1.10) and Proposition 3.8, which in turn is key for the uniqueness in Subsection
4.2.

The compatibility condition (Compa) creates important difficulties when trying to
approximate the initial data to construct an approximate sequence of smooth solutions.
Our construction in Subsubsection 3.2.1 is inspired by [10]. However, since we apply
existence results for smooth data, we need to further regularize the right-hand-side√
ρ0g of (Compa). We then require that u0 ∈ L2(R2) and ∇u0 ∈ L1(R2) so as

to be able to show the appropriate convergence and boundedness properties of the
constructed sequence of approximate data.

Outline of the proofs. The general strategy is that of proofs à la Hoff [30].

We first get lower-order estimates on the velocity. We give propagate the D̃1,2(R2)
or the D1,2(R3) regularity of the initial data for the velocity. In the three-dimensional
case, this estimate directly yields a L∞t L

6
x bound on u . In the two-dimensional case,

these estimates, in combination with the interpolation estimate of Proposition A.6
(Case 1 of Theorem A) or the weighted interpolation estimate of Proposition 3.8 (Case
2 of Theorem A), lead to estimates of the velocity itself.
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The next step is to get higher-order estimates on the velocity. We carry out time-
weighted estimates of

√
ρu̇ . Finally we transfer (shift) the integrability of

√
ρu̇ to

second-order derivatives of the velocity via maximal regularity estimates for the sta-
tionary Stokes system. This enables us to get the crucial Lipschitz estimate for the
velocity.

The Lipschitz estimate for the velocity is key to the uniqueness proofs. To show the
uniqueness, we carry out a duality proof, which is a new approach in this context. In
particular our approach differs from the Lagrangian approach used in [16].

For more details concerning the relationship between the results in the paper, see
Figure 1.

lower-order estimates

higher-order estimates

u ∈ L∞t L2
x

u ∈ L∞t L6
x

3D

2D

almost No Vacuum (aNV)
Vacuum Bubble (VB)

Far-Field Vacuum (FFV-2)
. x̄−1u ∈ L∞t L2

x

. x̄−1u ∈ L∞t,x
if (Compa)

∇u ∈ L∞t L2
x

√
t∇2u ∈ L∞t L2

x

√
ρtu̇ ∈ L∞t L2

x ∇u ∈ L1
tL
∞
x

shift

. uniqueness

. Lions’

conjecture

Figure 1. Relationships between the results in the paper

1.5. Some notations and assumptions. Throughout, we use Bn to denote the ball
{x ∈ Rd; |x| ≤ n}. The notation (f)+ = max(f, 0) stands for the positive part of
a function f . The japanese bracket is defined as follows 〈x〉 := (e + |x|2)1/2 and we
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recall that the notation x̄ stands for x̄ := 〈x〉 (ln〈x〉)2 . We define material derivative
v̇ := ∂tv+u ·∇v for functions v : R+×Rd → Rd. Sometimes, we denote ∂tv by vt. For
simplicity, we will fix the viscosity to be 1 thanks to a standard rescaling argument.

1.6. Outline of the paper. Section 2 is concerned with the three-dimensional case.
It is devoted to the proof of the existence part of Theorem B. Section 3 handles the
two-dimensional case. It is devoted to the existence part of Theorem A. The proof is
more involved, especially in the far-field vacuum case, than in 3D. The proof of unique-
ness partis of Theorem A and Theorem B is carried out in Section 4. Theorem C is
proved in Section 5. Some frequently used functional spaces and essential interpolation
inequalities are recalled in Appendix A.

2. Proof of the existence results in the three-dimensional case,
Theorem B

This section mainly concerns the proof of the existence part in Theorem B (3D case).
The idea is to take advantage of classical results to construct smooth approximate
solutions without vacuum. After that, we show persistence of D1,2(R3) regularity and
some time-weighted estimates for time derivatives of the velocity independent of the
lower bounds of the density. Those estimates will enable us to shift the regularity to
obtain L1

tLipx estimates for the velocity, which is important for our proof of uniqueness.
Finally, we pass to the limit via classical compactness argument.

Recall that the initial data (ρ0, u0) satisfies conditions (1.2) and (1.7), and that
u0 ∈ D1,2(R3),∇ · u0 = 0. Thus, we consider smoothed-out initial data

ρε0 ∈ C∞(R3) with ε ≤ ρε0 ≤ 2ρ∗ and uε0 ∈ C∞0 (R3) with ∇ · uε0 = 0

such that as ε→ 0+

uε0 → u0 in D1,2(R3),
√
ρε0u

ε
0 ⇀

√
ρ0u0 in L2(R3)

and

ρε0 ⇀ ρ0 weak ∗ in L∞(R3).

Then, by the strong solution theory (e.g. [13, Theorem 0.2]), we know that there exists
a local-in-time strong solution (ρε, uε) to (INS).

2.1. Uniform estimates. In what follows, we focus on uniform estimates for the
approximate solutions (ρε, uε). We often use the following Sobolev embedding

(2.1) ‖z‖L6(R3) ≤ C‖∇z‖L2(R3) for z ∈ Ḣ1(R3),

with a universal positive constant C . For notational simplicity, we omit the superscript
ε and write the solution (ρ, u).
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2.1.1. Persistence of D1,2(R3) regularity for the velocity.

Proposition 2.1 (gradient estimate). Let (ρ, u) be a smooth enough solution to system
(INS) on [0, T∗)× R3. There exist positive universal constants c0, C such that if

(2.2) ρ
3
2
∗ ‖
√
ρ0u0‖L2(R3)‖∇u0‖L2(R3) ≤ c0

then it holds for all t ∈ [0, T∗)

(2.3) ‖u(t, ·)‖2
D1,2(R3) + 2

w t

0
‖(√ρut,∆u)(s, ·)‖2

L2(R3) ds+ 2
w t

0
‖P (s, ·)‖2

D1,2(R3) ds

≤ ‖∇u0‖2
L2(R3) exp(C‖√ρ0u0‖2

L2(R3)‖∇u0‖2
L2(R3)).

If (2.2) is not satisfied, then (2.3) holds true on [0, T ] provided that

(2.4) T ≤ c

ρ3
∗‖∇u0‖4

L2(R3)

for some universal constant c.

Proof. In order to estimate the second derivative of u and the gradient of the pressure,
we rewrite the momentum equation of (INS) in the form

(2.5)


−∆u+∇P = −ρu̇ in (0, T )× R3,

∇ · u = 0 in (0, T )× R3,

u→ 0, as |x| → ∞.

Applying the standard L2 -estimate to (2.5) yields that

‖∆u‖2
L2(R3)2 + ‖∇P‖2

L2(R3) ≤ C
(
ρ∗‖
√
ρut‖2

L2(R3) + ρ2
∗‖u · ∇u‖2

L2(R3)

)
.(2.6)

Testing the momentum equation of (INS) against ut yields

1

2

d

dt
‖∇u‖2

L2(R3) + ‖√ρut‖2
L2(R3) = −〈ρu · ∇u, ut〉.

Hence, by Hölder’s inequality

1

2

d

dt
‖∇u‖2

L2(R3) + ‖√ρut‖2
L2(R3) ≤‖

√
ρu · ∇u‖L2(R3)‖

√
ρut‖L2(R3)

≤Cρ∗‖u · ∇u‖2
L2(R3) +

1

4
‖√ρut‖2

L2(R3)

Putting the above inequality together with (2.6) implies

d

dt
‖∇u‖2

L2(R3) +
1

ρ∗
‖(√ρut,∆u,∇P )‖2

L2(R3) ≤Cρ∗‖u‖2
L6(R3)‖∇u‖2

L3(R3)(2.7)

≤Cρ∗‖∇u‖3
L2(R3)‖∆u‖L2(R3)

≤Cρ3
∗‖∇u‖6

L2(R3) +
1

2ρ∗
‖∆u‖2

L2(R3),

in which inequality (2.1) and the Gagliardo-Nirenberg inequality (A.1) were used.

Therefore, we see that whenever T satisfies Cρ3
∗‖∇u0‖2

L2(R3)

r T
0
‖∇u‖2

L2(R3) ds < 1,
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we have

‖∇u(t, ·)‖2
L2(R3) ≤

‖∇u0‖2
L2(R3)

1− Cρ3
∗‖∇u0‖2

L2(R3)

r T
0
‖∇u(s, ·)‖2

L2(R3) ds
for all t ∈ [0, T ].

Now, the energy inequality (1.3) implies that

‖∇u0‖2
L2(R3)

w t

0
‖∇u‖2

L2(R3) ds ≤ ‖∇u0‖2
L2(R3)‖

√
ρ0u0‖2

L2(R3) ≤
1

2Cρ3
∗

for any t ≥ 0

provided that (
√
ρ∗)

3‖∇u0‖L2(R3)‖
√
ρ0u0‖L2(R3) ≤ c0 for small enough c0. Using in-

equality (2.1) again, we get (2.3).
In the case when the smallness condition is not satisfied, we get from (2.7) that

‖∇u(t, ·)‖4
L2(R3) ≤

‖∇u0‖4
L2(R3)

1− 2Cρ3
∗t‖∇u0‖4

L2(R3)

,

which eventually enables us to finish the proof of the second statement. �

Remark 2.2 (boundedness in space of the velocity). Notice that thanks to inequality
(2.3) we also have

w T

0
‖u(t, ·)‖4

L∞(R3) dt ≤
w T

0
‖∇u‖2

L2(R3)‖∇2u‖2
L2(R3) dt

≤ ‖∇u0‖4
L2(R3) exp(C‖√ρ0u0‖2

L2(R3)‖∇u0‖2
L2(R3)).

2.1.2. Estimates of the time derivative. Here, we want to bound time derivative
√
ρtut

in the space L∞(0, T ;L2(R3)) and
√
t∇ut in the space L2((0, T )× R3), since it is an

important step towards the proof of existence and higher-order spatial estimates for
the velocity.

Proposition 2.3 (time derivative estimates). Let (ρ, u) be a smooth enough solution
to system (INS) on [0, T∗)× R3. Then for all T ∈ [0, T∗) it holds

(2.8) sup
t∈[0,T ]

‖
√
ρtut‖2

L2(R3) +
w T

0
‖
√
tut‖2

D1,2(R3) ds ≤ C0,T ,

where C0,T is a constant depending only on T, ρ∗ and norms ‖√ρ0u0‖L2(R3), ‖∇u0‖L2(R3).

Proof. At first, applying the time derivative ∂t to the momentum equation in system
(INS) and multiplying the resulting equation by

√
t yields

(2.9) ρ
(
∂t(
√
tut) + u · ∇(

√
tut)

)
−∆(

√
tut) +∇(

√
tPt)

=
1

2
√
t
ρut −

√
tρtut −

√
tρtu · ∇u−

√
tρut · ∇u.

Taking the L2 scalar product with
√
tut , we get

1

2

d

dt
‖
√
ρtut‖2

L2 + ‖∇(
√
tut)‖2

L2 = A1 + · · ·+ A4(2.10)
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where

A1 :=
1

2
‖√ρut‖2

L2(R3),

A2 := −〈tρt, |ut|2〉,

A3 := −〈
√
tρtu · ∇u,

√
tut〉,

A4 := −〈
√
tρut · ∇u,

√
tut〉.

In order to estimate A1, A2, A3, A4, we proceed as follows. Noticing that

A1 =
1

2
‖√ρ(u̇− u · ∇u)‖2

L2(R3)

≤ ‖√ρu̇‖2
L2(Rd) + ρ∗‖u‖2

L∞(R3)‖∇u‖2
L2(R3).

Using the equation ρ̇ = ∂tρ+ u · ∇ρ = ∂tρ+∇ · (ρu) = 0, we write

A2 = −〈tρu,∇(|ut|2)〉

and

|A2| ≤2
√
ρ∗‖u‖L∞(R3)‖

√
ρtut‖L2(R3)‖∇(

√
tut)‖L2(R3)

≤1

8
‖∇(
√
tut)‖2

L2(R3) + Cρ∗‖
√
ρtut‖2

L2(R3)‖u‖2
L∞(R3).

Similarly, we write

A3 = −〈tρu,∇[(u · ∇u) · ut]〉.

and decompose

|A3| ≤ 〈|tρu|, |∇u|2 |ut|〉+ 〈|tρu|, |u| |∇2u| |ut|〉+ 〈|tρu|, |u| |∇u| |∇ut|〉
=: A31 + A32 + A33.

Thanks to inequality (2.1) and Young’s inequality

A31 ≤ ρ∗
√
T‖
√
tut‖L6(R3)‖u‖L6(R3)‖∇u‖2

L3(R3)

≤ Cρ∗
√
T‖∇(

√
tut)‖L2(R3)‖∇u‖2

L2(R3)‖∇2u‖L2(R3)

≤ 1

8
‖∇(
√
tut)‖2

L2(R3) + Cρ2
∗T‖∇u‖4

L2(R3)‖∇2u‖2
L2(R3).

As for A32, A33 , we have

A32 ≤
√
ρ∗T‖

√
ρtut‖L2(R3)‖u‖2

L∞(R3)‖∇2u‖L2(R3)

≤ ‖
√
ρtut‖2

L2(R3)‖u‖4
L∞(R3) + ρ∗T‖∇2u‖2

L2(R3)

and

A33 ≤ ρ∗
√
T‖u‖2

L∞(R3)‖∇u‖L2(R3)‖∇(
√
tut)‖L2(R3)

≤ 1

8
‖∇(
√
tut)‖2

L2(R3) + Cρ2
∗T‖u‖4

L∞(R3)‖∇u‖2
L2(R3).
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To handle A4, we use inequality (2.1) and the Gagliardo-Nirenberg inequality (A.1) to
get

|A4| ≤
√
ρ∗‖
√
ρtut‖L2(R3)‖∇u‖L3(R3)‖

√
tut‖L6(R3)

≤√ρ∗‖
√
ρtut‖L2(R3)‖∇u‖

1
2

L2(R3)‖∇
2u‖

1
2

L2(R3)‖∇(
√
tut)‖L2(R3)

≤1

8
‖∇(
√
tut)‖2

L2(R3) + Cρ∗‖
√
ρtut‖2

L2(R3)‖∇u‖L2(R3)‖∇2u‖L2(R3).

By putting all the above estimates into (2.10), we find that

(2.11)
d

dt
‖
√
ρtut‖2

L2(R3)+‖∇(
√
tut)‖2

L2(R3) ≤ ‖
√
ρtut‖2

L2(R3)

(
1 + ‖u‖4

L∞(R3) + ‖∇u‖L2(R3)‖∇2u‖L2(R3)

)
+ CT

(
‖√ρu̇‖2

L2(R3) + (‖u‖4
L∞(Rd) + 1)‖∇u‖2

L2(R3) + (‖∇u‖4
L2(R3) + 1)‖∇2u‖2

L2(R3)

)
.

Using (2.3) and Remark 2.2 again, it is not difficult to conclude that inequality (2.11)
can be rewritten as

d

dt
‖
√
ρtut‖2

L2(R3) + ‖∇(
√
tut)‖2

L2(R3) ≤ B3d(t)‖
√
ρtut‖2

L2(R3) +B3d(t)

for some function B3d ∈ L1(0, T ), the norm of which bounded only in terms of time
T, ρ∗ and norms ‖√ρ0u0‖L2(R3), ‖∇u0‖L2(R3).

Finally, Gronwall’s lemma implies that for all t ∈ [0, T ]

‖
√
ρtut‖2

L2(R3) +
w T

0
‖∇(
√
tut)‖2

L2(R3) ds ≤
w T

0
B3d(t) dt exp

(w T

0
B3d(t) dt

)
.(2.12)

This completes the proof of proposition 2.3. �

2.1.3. Shift of regularity. As a consequence of Proposition 2.3, we will get higher-order
estimates for the velocity, via considering the following multi-dimensional stationary
Stokes problem

(2.13)


−∆(

√
tu) +∇(

√
tP ) = −ρ

√
t(ut + u · ∇u) in (0, T )× Rd,

∇ · (
√
tu) = 0 in (0, T )× Rd,

√
tu→ 0, |x| → ∞.

We have

Proposition 2.4 (higher-order estimates). Let (ρ, u) be a smooth enough solution to
system (INS) on [0, T∗) × R3 . Then for all T ∈ [0, T∗) it holds that for all r ∈ [2, 6]
and q ∈ [2, 4r

3r−6
]

‖∇2(
√
tu)‖Lq(0,T ;Lr(R3)) + ‖∇(

√
tP )‖Lq(0,T ;Lr(R3)) ≤ C0,T .

Moreover, we have the key Lipschitz estimate
w T

0
‖∇u(t, ·)‖L∞(R3) dt ≤ C0,T T

1
4

and C0,T T
1
4 → 0 as T → 0.
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Proof. Applying the standard Lp estimates for system (2.13) yields that for all finite
p,

‖∇2(
√
tu)‖Lp(R3) + ‖∇(

√
tP )‖Lp(R3) ≤ C(p)

√
ρ∗‖
√
ρtu̇‖Lp(R3).(2.14)

Now, we estimate the material derivative in the right-hand side of above inequality.
On the one hand, we have by inequality (2.1) and Proposition 2.3

w T

0
‖
√
ρtut‖2

L6(R3) dt ≤ ρ∗
w T

0
‖∇(
√
tut)‖2

L2(R3) dt ≤ C0,T .

Interpolating this with the estimate in Proposition 2.3 gives that for all r ∈ [2, 6] and
q ∈ [2, 4r

3r−6
]

‖
√
ρtut‖Lq(0,T ;Lr(R3) ≤ C0,T .(2.15)

In the other hand, taking p = 2 in inequality (2.14) and using Young’s inequality yield
that

‖∇2(
√
tu)‖L∞(0,T ;L2(R3))

(2.16)

≤C(
√
ρ∗‖
√
ρtut‖L∞(0,T ;L2(R3)) + ρ∗‖

√
tu · ∇u‖L∞(0,T ;L2(R3)))

≤C(
√
ρ∗‖
√
ρtut‖L∞(0,T ;L2(R3)) + ρ∗‖

√
tu‖L∞(0,T ;L∞(R3))‖∇u‖L∞(0,T ;L2(R3)))

≤C(ρ∗)
(
‖
√
ρtut‖L∞(0,T ;L2(R3)) + ‖(

√
t∇u,

√
t∇2u)‖

1
2

L∞(0,T ;L2(R3))‖∇u‖L∞(0,T ;L2(R3))

)
≤C0,T .

Then by the Gagliardo-Nirenberg inequality (A.1), Proposition 2.1 and estimate (2.16)

‖
√
ρtu · ∇u‖L2(0,T ;L6(R3)) ≤

√
ρ∗

(w T

0
‖u‖2

L∞(R3)‖
√
t∇u‖2

L6(R3) dt)

)1/2

≤√ρ∗
(w T

0
‖∇u‖L2(R3)‖∇2u‖L2(R3)‖

√
t∇u‖2

L6(R3) dt

)1/2

≤√ρ∗
(w T

0
‖∇u‖L2(R3)

(
‖∇2u‖2

L2(R3) + ‖
√
t∇u‖4

L6(R3)

)
dt

)1/2

≤C0,T .

Notice that the Gagliardo-Nirenberg inequality [26, page 54] and estimate (2.16) give
that

‖
√
ρtu · ∇u‖L∞(0,T ;L2(R3)) ≤‖

√
ρtu‖L∞(0,T ;L∞(R3))‖∇u‖L∞(0,T ;L2(R3))

≤√ρ∗‖
√
tu‖

1
2

L∞(0,T ;L2(R3))‖
√
t∇2u‖

1
2

L∞(0,T ;L2(R3))‖∇u‖L∞(0,T ;L2(R3))

≤C0,T .

Hence, by interpolation, for all r ∈ [2, 6] and q ∈ [2, 4r
3r−6

]

‖
√
ρtu · ∇u‖Lq(0,T ;Lr(R2)) ≤ C0,T ,

which together with (2.15) and (2.14) imply the desired estimate.
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Finally, we have by inequality (A.1) again
w T

0
‖∇u‖L∞(R3) dt ≤

w T

0
‖∇u‖

1
4

L2(R3)‖∇
2(
√
tu)‖

3
4

L6(R3) t
− 3

8 dt

≤‖∇u‖
1
4

L∞(0,T ;L2(R3))‖∇
2(
√
tu)‖

3
4

L2(0,T ;L6(R3))‖t
− 3

8‖
L

8
5 (0,T )

≤C0,T T
1
4 .

It remains to check in the proof of Proposition 2.3 that C0,T is uniformly bounded as
T → 0. This completes the proof of Proposition 2.4. �

2.2. Proof of existence. One can now turn to the proof of the existence of a solution
stated in Theorem B. Denoting by T ε the maximal time of existence for approximate
solutions (ρε, uε), then [49, Theorem 1.4] shows that T ε ≥ T0 . On the other hand, in
the case the smallness condition (1.8) is satisfied, one can continue (ρε, uε) globally-in-
time thanks to the L1

tLipx estimate in Proposition 2.4 and the blow-up criterion in [13,
Theorem 0.4] or [10, Theorem 4]. It remains to prove the convergence of approximate
solutions. At this stage, with all the estimates established in the previous subsection,
the standard compactness argument yields that, up to a subsequence,

ρε ⇀ ρ weak ∗ in L∞(R+ × R3) and 0 ≤ ρ ≤ ρ∗,

∇uε ⇀ ∇u weak in L2(R+;L2(R3),

uε ⇀ u weak in L2(R+;L6(R3),

for some (ρ, u) satisfies all the regularity results stated in Theorem B, except for the
regularities of non-linear term

√
ρut. The compactness result obtained in [22] then

shows that

ρε → ρ in Cloc(R+;Lqloc(R
3)), ∀ q ∈ [0,∞)

and
√
ρεuε → √ρu in L2

loc(R+ × R3).

From which, we know from Proposition 2.3 that
√
ρεuεt ⇀

√
ρut weak in D′((0, T0)×

R3)) and thus
√
ρut ∈ L2(0, T0;L2(R3)) thanks to the uniform bounds (2.3). Similarly,

one has
√
ρtut ∈ L∞(0, T0;L2(R3)).

Finally, all the compactness information above is enough to justify that the couple
(ρ, u) is a weak solution to (INS) in the sense of distributions. This finishes the proof
of the existence part of Theorem B. �

3. Proof of the existence results in the two-dimensional case,
Theorem A

This section is concerned with the proof of the existence part in Theorem A (2D case).
The initial data (ρ0, u0) satisfies condition (1.2) and (1.7), and ∇u0 ∈ L2(R2),∇·u0 =
0. We analyse separately the case when: (i) (aNV) or (VB) is satisfied, see Subsection
3.1 below, (ii) (FFV-2) is satisfied, see Subsection 3.2. The idea is similar to the three-
dimensional case. We first approximate the data or mollify the equation6 and rely on

6We use two different approximation procedures depending on which case (i) or (ii) is considered



18 C. PRANGE AND J. TAN

known existence results for smooth approximate solutions without vacuum. Then, we

show the persistence of the regularity u ∈ D̃1,2(R2) and other higher-order estimates
uniformly for the approximate solutions. The actual existence proof is similar to the
one in the three-dimensional case, see Subsection 2.2.

Before going into the details of each case, let us recall an estimate obtained in
[43] whose proof is motivated by the work [37] of Li and Xin on the two-dimensional
compressible Navier-Stokes equations with vacuum. For the reader’s convenience, we
provide its proof here and mention in particular that it is valid for our approximate
solutions constructed in the follow-up subsections.

Proposition 3.1 (gradient estimate; [43, Lemma 3.2]). There exists a universal con-
stant C > 0 such that for all t > 0,

(3.1) ‖∇u(t, ·)‖2
L2(R2) + 2

w t

0
‖(√ρu̇,∆u,∇P )(s, ·)‖2

L2(R2) ds

≤ ‖∇u0‖2
L2(R2) exp(Cρ∗‖

√
ρ0u0‖2

L2(R2)).

Proof. The main idea is to test the momentum equation against u̇. This gives that

1

2

d

dt
‖∇u‖2

L2(R2) + ‖√ρu̇‖2
L2(R2) = 〈∆u, u · ∇u〉+ 〈P, div (u · ∇u)〉.(3.2)

Using that ∇ · u = 0 we have ∆u = ∇⊥(∇⊥ · u) with ∇⊥ := (−∂2, ∂1), and thus

〈∆u, u · ∇u〉 = 〈∇⊥ · u, u · ∇(∇⊥ · u)〉 = 0.

Meanwhile, using ∇ · u = 0 again, by the well-known duality between BMO(R2) and
the Hardy space H1(R2) and the following inequality (see for instance [42]), there exists
a universal positive constant C such that for all vectors w, z ∈ L2(R2;R2) satisfying
∇ · w = ∇⊥z = 0,

(3.3) ‖w · z‖H1(R2) ≤ C‖w‖L2(R2)‖z‖L2(R2),

we have

|〈P, div (u · ∇u)〉| ≤
∑
j=1,2

|〈P, ∂ju · ∇uj〉|

≤
∑
j=1,2

‖P‖BMO(R2)‖∂ju · ∇uj‖H1(R2)

≤ ‖P‖BMO(R2)‖∇u‖2
L2(R2)

≤ C‖∇P‖L2(R2)‖∇u‖2
L2(R2).

Notice that in the last inequality we used the embedding Ḣ1(R2) ↪→ BMO(R2) with a
numerical constant C .

Plugging the above inequalities into (3.2) and noticing that

‖(∆u,∇P )‖2
L2(R2) ≤ ‖ρu̇‖2

L2(R2) ≤ ρ∗‖
√
ρu̇‖2

L2(R2),

we obtain (3.1) from the energy inequality (1.3). �

Notice that this result does not require any of the assumptions (aNV), (VB) nor
(FFV-2).
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3.1. The case when (aNV) or (VB) is satisfied.

3.1.1. Approximation procedure. As in the three-dimensional case, we regularize the
initial data. We require that the approximate initial density ρε0 satisfies (aNV) or
(VB) whenever ρ0 satisfies (aNV) or (VB). Therefore, we construct a sequence ρε0
such that ρε0 ≥ ρ0 . To do this we build the approximation on the sequence of balls Bn ,
n→∞ .

Let ε > 0 and n ∈ N , n ≥ 1. Let Kε denote a non-negative mollifier. We
approximate the initial velocity u0 by uε,n0 ∈ C∞0 (Bn) in the following way

uε,n0 = (u0ϕn) ? Kε,

where ϕn = ϕ(·/n) with ϕ ∈ C∞0 (B1) a cut-off function such that ϕ = 1 on B1/2 . As
for the density, we approximate it in the following way on Bn

ρε,n0 := ρ0 ? Kε + ‖ρ0 ? Kε − ρ0‖L∞(Bn) +
1

n
e−|x|

2

.

Notice that

ρε,n0 ∈ C∞(R2) with
1

n
e−n

2 ≤ ρε0 ≤ 2ρ∗ and uε,n0 ∈ C∞0 (R2) with ∇ · uε,n0 = 0.

Moreover, ‖ρ0 ?Kε−ρ0‖L∞(Bn) −→ 0 when ε→ 0+ and ρε,n0 ≥ ρ0 . Therefore if (aNV)
(resp. (VB)) is satisfied for ρ0 it is also satisfied for ρε,n0 .

We consider the solutions (ρε,n, uε,n) to the following mollified version of (INS)

(INS-ε)


∂tρ

ε,n +∇ ·
(
ρε,n(Kε ? u

ε,n)
)

= 0,

∂t(ρu
ε,n) +∇ ·

(
ρε,n(Kε ? u

ε,n)⊗ uε,n
)

+∇P ε,n = ν∆uε,n,

∇ · uε,n = 0.

in the domain Bn with no-slip boundary condition uε,n = 0 on ∂Bn and initial data
(ρε,n0 , uε,n0 ). According to [42, Theorem 2.6], there exists a smooth global-in-time solu-
tion (ρε,n, uε,n) ∈ C∞([0,∞)×Bn) to (INS-ε).

Our objective is now to derive uniform estimates in ε and n for the approximate
solutions (ρε,n, uε,n). For notational simplicity, we drop the superscripts ε and n below
and simply write the solution (ρ, u). Notice that all the estimates below are on Bn .7

3.1.2. Lower-order estimates. Here, we establish some lower-order bounds following
from condition (aNV) or (VB) for ρ0.

Proposition 3.2 (L∞t L
2
x bound for the velocity). We have

‖u‖L∞(R+;L2(Bn)) ≤ C∗(‖
√
ρ0u0‖L2(R2) + ‖∇u0‖L2(R2))(3.4)

and

‖u‖L4(R+;L∞(Bn)) ≤ C∗
(
‖√ρ0u0‖L2(Bn) + ‖∇u0‖L2(Bn)

)2‖∇u0‖2
L2(R2) exp(‖√ρ0u0‖2

L2(R2)),

(3.5)

with positive constant C∗ depending only on the factors in condition (aNV) or (VB).

7Notice that as in the previous subsection, the estimates that do not involve second-order space
derivatibves or first-order time derivatives of the velocity can be extended to R2 thanks to the fact
that uε,n satisfies no-slip boundary conditions on ∂Bn .
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Proof. Using the Lagrangian flow maps and the fact that they are measure preserving
due to incompressibility, ρ satisfies (aNV) or (VB) along the evolution with the same
constants d , δ0 and ‖(1/η) 1η<δ0‖L1 in the case when (aNV) is satisfied, p , d , η̄ and
‖(η̄ − η)+‖Lp in the case when (VB). Then by Proposition A.6 and (3.1), we get

‖u‖L∞(R+;L2(Bn)) ≤ C∗(‖
√
ρu‖L2(Bn) + ‖∇u‖L2(Bn))

≤ C∗(‖
√
ρ0u0‖L2(R2) + ‖∇u0‖L2(R2)).

Using (3.4) and (3.1), we further get
w ∞

0
‖u(t, ·)‖4

L∞(Bn) dt

≤
w ∞

0
‖u‖2

L2(Bn)‖∇2u‖2
L2(Bn) dt

≤ C∗
(
‖√ρ0u0‖L2(R2) + ‖∇u0‖L2(R2)

)2‖∇2u‖2
L2(R+;L2(Rn))

≤ C∗
(
‖√ρ0u0‖L2(R2) + ‖∇u0‖L2(R2)

)2‖∇u0‖2
L2(R2) exp(‖√ρ0u0‖2

L2(R2)). �

3.1.3. Estimates of the time derivative. In this step, we want to bound time derivatives√
ρtut in L∞loc(R+;L2(Bn)) and

√
t∇ut in L2

loc(R+;L2(Bn)), since it is an important
step towards higher-order spatial estimates for the velocity.

Proposition 3.3 (time derivative estimates). For any T > 0, there exits a positive
constant C0,∗(T ) depending only on C∗, T, ρ∗ and ‖√ρ0u0‖L2 , ‖∇u0‖L2 such that

(3.6) ‖
√
ρtut‖2

L∞(0,T ;L2(Bn)) + ‖∇(
√
tut)‖2

L2(0,T ;L2(Bn)) ≤ C0,∗(T ).

Proof. The proof is similar to the three-dimensional case. Recall that by testing the
equation (2.9) with

√
tut , we are led to

1

2

d

dt
‖
√
ρtut‖2

L2 + ‖∇(
√
tut)‖2

L2 = A1 + · · ·+ A4(3.7)

with

A1 =
1

2
‖√ρut‖2

L2(Rd),

A2 = −〈tρt, |ut|2〉,

A3 = −〈
√
tρtu · ∇u,

√
tut〉,

A4 = −〈
√
tρut · ∇u,

√
tut〉.

In order to estimate A1, A2, A3, A4, we proceed as follows. Noticing that

A1 =
1

2
‖√ρ(u̇− u · ∇u)‖2

L2(Bn)

≤ ‖√ρu̇‖2
L2(Bn) + ρ∗‖u‖2

L∞(Bn)‖∇u‖2
L2(Bn).

Using the equation ∂tρ+∇ · (ρu) = 0, we write

A2 = −〈tρu,∇(|ut|2)〉
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and

|A2| ≤2
√
ρ∗‖u‖L∞(Bn)‖

√
ρtut‖L2(Bn)‖∇(

√
tut)‖L2(Bn)

≤1

8
‖∇(
√
tut)‖2

L2(Bn) + Cρ∗‖
√
ρtut‖2

L2(Bn)‖u‖2
L∞(Bn).

Similarly, we write

A3 = −〈tρu,∇[(u · ∇u) · ut]〉,
and decompose

|A3| ≤ 〈|tρu|, |∇u|2 |ut|〉+ 〈|tρu|, |u| |∇2u| |ut|〉+ 〈|tρu|, |u| |∇u| |∇ut|〉
=: A31 + A32 + A33.

To bound A31 , we write by the Gagliardo-Nirenberg inequality (A.1)

A31 ≤
√
ρ∗T‖

√
ρtut‖L2(Bn)‖∇u‖2

L4(Bn)‖u‖L∞(Bn)

≤ ‖
√
ρtut‖2

L2(Bn)‖u‖2
L∞(Bn) + ρ∗T‖∇u‖4

L4(Bn)

≤ ‖
√
ρtut‖2

L2(Bn)‖u‖2
L∞(Bn) + ρ∗T‖∇u‖2

L2(Bn)‖∇2u‖2
L2(Bn).

As for A32, A33 , we have

A32 ≤
√
ρ∗T‖

√
ρtut‖L2(Bn)‖u‖2

L∞(Bn)‖∇2u‖L2(Bn)

≤ ‖
√
ρtut‖2

L2(Bn)‖u‖4
L∞(Bn) + ρ∗T‖∇2u‖2

L2(Bn)

and

A33 ≤ ρ∗
√
T‖u‖2

L∞(Bn)‖∇u‖L2(Bn)‖∇(
√
tut)‖L2(Bn)

≤ 1

8
‖∇(
√
tut)‖2

L2(Bn) + Cρ2
∗T‖u‖4

L∞(Bn)‖∇u‖2
L2(Bn).

To handle A4 , we need to use Proposition A.6. More precisely, since condition (aNV)
or (VB) is also satisfied by ρ , so the functional inequality (A.8) (taking η =

√
tut )

yields that

‖
√
tut‖L2(Bn) ≤ C∗

(
‖
√
ρtut‖L2(Bn) + ‖∇(

√
tut)‖L2(Bn)

)
.(3.8)

Then for all r ∈ [2,∞), we have by interpolation inequality

‖
√
tut‖Lr(Bn) ≤C(‖

√
tut‖L2(Bn) + ‖

√
t∇ut‖L2(Bn))

≤C∗(‖
√
ρtut‖L2(Bn) +∇(

√
tut)‖L2(Bn)),

which implies that

|A4| ≤‖
√
ρtut‖2

L4(Bn)‖∇u‖L2(Bn)

≤‖
√
ρtut‖

1
2

L2(Bn)‖
√
ρtut‖

3
2

L6(Bn)‖∇u‖L2(Bn)

≤C∗ρ
3
4
∗ ‖
√
ρtut‖

1
2

L2(Bn)

(
‖
√
ρtut‖L2(Bn) + ‖∇(

√
tut)‖L2(Bn)

) 3
2‖∇u‖L2(Bn)

≤C∗ρ
3
4
∗ ‖
√
ρtut‖2

L2(Bn)‖∇u‖L2(Bn) + C∗ρ
3
∗‖
√
ρtut‖2

L2(Bn)‖∇u‖4
L2(Bn).
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Finally, by plugging all the above estimates of Ai (i = 1, . . . 4) into (3.7), we get

d

dt
‖
√
ρtut‖2

L2(Bn) + ‖∇(
√
tut)‖2

L2(Bn)

(3.9)

≤‖
√
ρtut‖2

L2(Bn)

(
1 + ‖u‖4

L∞(Bn) + ‖∇u‖L2(Bn) + ‖∇u‖4
L2(Bn)

)
+ C0,∗(T )

(
‖√ρut‖2

L2(Bn) + (‖u‖4
L∞(Bn) + 1)‖∇u‖2

L2(Bn) + (‖∇u‖2
L2(Bn) + 1)‖∇2u‖2

L2(Bn)

)
.

To conclude, thanks to inequalities (3.1) and (3.5), it is not difficult to find that in-
equality (3.9) can be rewritten as

d

dt
‖
√
ρtut‖2

L2(Bn) + ‖∇(
√
tut)‖2

L2(Bn) ≤ B2d(t)‖
√
ρtut‖2

L2(Bn) +B2d(t)

for some function B2d ∈ L1(0, T ), the norm of which bounded only in terms of C∗, T,
ρ∗ and norms ‖√ρ0u0‖L2(Bn), ‖∇u0‖L2(Bn).

Therefore, Gronwall’s lemma implies that for all t ∈ [0, T ]

‖
√
ρtut‖2

L2 +
w T

0
‖∇(
√
tut)‖2

L2 dt ≤
w T

0
B2d(t) dt exp

(w T

0
B2d(t) dt

)
.

This completes the proof of proposition 3.3. �

3.1.4. Shift of regularity. As a consequence of Proposition 3.3, we will get higher-order
estimates for the velocity, via considering the Stokes problem (2.13). We have

Proposition 3.4 (higher-order estimates). Let T > 0. For all r ∈ [2,∞) and q ∈
[2, 2r

r−2
), we have

‖∇2(
√
tu)‖Lq(0,T ;Lr(Bn)) + ‖∇(

√
tP )‖Lq(0,T ;Lr(Bn)) ≤ C0,∗(T ).(3.10)

Moreover, we have the following key Lipschitz estimate
w T

0
‖∇u(t, ·)‖L∞(R2) dt ≤ C0,∗(T )T

1
3 .(3.11)

In particular, C0,∗(T )T
1
3 → 0 as T → 0.

Proof. Applying the standard Lp estimates for system (2.13), one gets for all finite p,

‖∇2(
√
tu)‖Lp(Bn) + ‖∇(

√
tP )‖Lp(Bn) ≤ C(p)

√
ρ∗‖
√
ρtu̇‖Lp(Bn).(3.12)

To estimate the material derivative in the right-hand side of above inequality, we use
the Gagliardo-Nirenberg inequality (A.1) and (3.38) to write that for all r̄ ∈ [2,∞)

w T

0
‖
√
ρtut‖2

Lr̄(Bn) dt ≤
w T

0
ρ∗(‖
√
tut‖L2(Bn) + ‖∇(

√
tut)‖L2(Bn))

2 dt

≤ C∗ρ∗
w T

0

(
‖
√
ρtut‖2

L2(Bn) + ‖∇(
√
tut)‖2

L2(Bn)

)
dt ≤ C0,∗(T ),

where in the last inequality we used bounds (3.6).
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Then, interpolating above inequality with bounds (3.6) yields that for all r ∈ [2,∞)
and q ∈ [2, r∗) with r∗ := 2r

r−2
, one has

‖
√
ρtut‖Lq(0,T ;Lr(Bn)) ≤ C0,∗(T ).(3.13)

For the convective term, we notice that the Gagliardo-Nirenberg inequality (A.1), (3.1)
and Proposition 3.2 imply that for all r̄ ∈ [2,∞)

‖
√
ρtu‖L∞(0,T ;Lr̄(Bn)) ≤

√
ρ∗T

(
‖u‖L∞(0,T ;L2(Bn)) + ‖∇u‖L∞(0,T ;L2(Bn))

)
≤ C0,∗(T ),

and for all r̄ ∈ [2,∞) and m̄ ∈ [2, 2r̄
r̄−2

]

‖∇u‖Lm̄(0,T ;Lr̄(Bn)) ≤‖∇u‖L∞(0,T ;L2(Bn)) + ‖∇u‖L2(0,T ;Ḣ1(Bn)) ≤ C0,∗(T ).

Thus, for all r ∈ [2,∞) and q ∈ [2, r∗), we write according to the above two inequalities

‖
√
ρtu · ∇u‖Lq(0,T ;Lr(Bn)) ≤ C0,∗(T ).(3.14)

Putting estimates (3.13) and (3.14) into (3.12) yields

‖∇2(
√
tu)‖Lq(0,T ;Lr(Bn)) + ‖∇(

√
tP )‖Lq(0,T ;Lr(Bn)) ≤ C0,∗(T ).

To prove Lipschitz estimate, we write by inequality (A.1), (3.1) and (3.10) that8

w T

0
‖∇u‖L∞(Bn) dt ≤

w T

0
‖∇u‖

1
3

L2(Bn)‖∇
2(
√
tu)‖

2
3

L4(Bn) t
− 1

3 dt

≤‖∇u‖
1
3

L∞(0,T ;L2(Bn))‖∇
2(
√
tu)‖

2
3

L2(0,T ;L4(Bn))‖t
− 1

3‖
L

3
2 (0,T )

≤C0,∗(T )T
1
3 .

It is easy to notice that C0,∗(T ) stays bounded as T → 0, thus we complete the proof
of Proposition 3.4. �

3.2. The case when (FFV-2) is satisfied. This case corresponds to the far-field
vacuum.

3.2.1. Approximation procedure. The construction is similar to the one in Section 3.
Without loss of generality, we assume that the initial density ρ0 satisfies ‖ρ0‖L1(R2) = 1,
which implies that there exists a positive constant N0 such that

w

BN0

ρ0 dx >
1

2
.

We require that the approximate initial density satisfies (FFV-2) whenever the initial
density satisfies (FFV-2).

Let ε > 0 and n ∈ N , n ≥ 1. Let Kε denote a non-negative mollifier. We
approximate the density in the following way on Bn

ρε,n0 := ρ0 ? Kε +
1

n
e−|x|

2

,

8Notice that the time-weighted estimate (3.10) enables us to gain smallness in time in the final
estimate (3.11).
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Notice that

ρε,n0 ∈ C∞(R2) with
1

n
e−n

2 ≤ ρε0 ≤ 2ρ∗ and uε,n0 ∈ C∞0 (R2) with ∇ · uε,n0 = 0.

For n ∈ N , n ≥ 1 fixed and for ε→ 0+ ,

(3.15)


w

BN0

ρε,n0 dx >
1

4
,

x̄αρε,n0 ⇀ x̄αρ0 weak ∗ in L∞(R2),

x̄αρε,n0 → x̄αρ0 in Lp(R2), ∀ p ∈ [1,∞).

The construction of an approximate initial velocity uε,n0 ∈ C∞0 (Bn) is inspired by [10].
We let uε,n0 ∈ C∞(Bn) be the solution to

−∆uε,n0 +∇P ε,n
0 =

√
ρε,n0 gε,n, ∇ · uε,n0 = 0 on Bn,(Approx-compa)

with no-slip boundary conditions uε,n0 = 0 on ∂Bn , with gε,n := (g ? Kε)ϕn . Notice
that we have the following estimate

(3.16) ‖∇(uε,n0 −u0)‖L2(Bn) ≤ Cn‖
√
ρε,n0 gε,n−ρ0g‖L2(Bn)+n

−1‖u0‖L2(Bcn)+‖u0‖H1(Bcn),

where we used the rescaled trace inequality

n−
1
2‖u0‖L2(∂Bn) + ‖u0‖H 1

2 (∂Bn)
≤ n−1‖u0‖L2(Bcn) + ‖u0‖H1(Bcn).

Furthermore, by the Poincaré-Sobolev inequality [26, estimate II.3.7], we have

‖uε,n0 ‖L2(R2) ≤ C‖∇uε,n0 ‖L1(R2) = C‖∇uε,n0 ‖L1(Bn)

≤ Cn‖∇(uε,n0 − u0)‖L2(Bn) + C‖∇u0‖L1(R2)

≤ Cn2‖
√
ρε,n0 gε,n − ρ0g‖L2(Bn) + C‖∇u0‖L1(R2).

(3.17)

We rely on (3.16), (3.17) and on the facts that9

n−1‖u0‖L2(Bcn) + ‖u0‖H1(Bcn) → 0, n→∞
and

Cn2‖
√
ρε,n0 gε,n − ρ0g‖L2(Bn) → 0, ε→ 0

when n is fixed, to choose a sequence (εk, nk) on which (ρεk,nk0 , uεk,nk0 ) have the ad hoc
boundedness and convergence properties.

Let k ∈ N . Assume n1 < . . . < nk−1 and ε1 > . . . > εk−1 > 0 are constructed.
There exists nk ∈ N , nk > nk−1

‖u0‖L2(Bcnk
) + ‖u0‖H1(Bcnk

) ≤
1

2k
.

Then there exists 0 < εk < εk−1 such that

Cn2
k‖
√
ρεk,nk0 gεk,nk − ρ0g‖L2(Bnk ) ≤

1

2k
.

9Notice that here we use the assumption that u0 in addition belongs to L2(R2) so that u0 ∈
H1(R2).
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Hence, for all k ∈ N ,

‖∇(uεk,nk0 − u0)‖L2(Bnk ) ≤
1

k
,

which implies

‖∇(uεk,nk0 − u0)‖L2(R2) = ‖∇(uεk,nk0 − u0)‖L2(Bnk ) + ‖∇u0‖L2(Bcnk
)

≤ 1

k
+ ‖∇u0‖L2(Bcnk

) → 0, n→∞,

and10

‖uεk,nk0 ‖L2(R2) ≤ C‖∇u0‖L1(R2) +
1

2
.

Therefore

‖uεk,nk0 ‖L2(R2), ‖
√
ρεk,nk0 uεk,nk0 ‖L2(R2) and ‖∇uεk,nk0 ‖L2(R2)

are bounded uniformly in k by

(3.18) A0 := ρ∗ + ‖ρ0‖L1(R2) + ‖√ρ0u0‖L2(R2) + ‖∇u0‖L1(R2) + ‖∇u0‖L2(R2)

and we have the following convergence properties

uεk,nk0 → u0 in D̃1,2(R2),
√
ρεk,nk0 uεk,nk0 ⇀

√
ρ0u0 in L2(R2).

Finally, elliptic estimates for the Neumann boundary value problem imply

(3.19) ‖∇P εk,nk
0 ‖L2(Bnk ) ≤ C‖

√
ρεk,nk0 gεk,nk‖L2(Bnk ) ≤ C‖√ρ0g‖L2(R2) +

1

2
,

with C uniform in k , and by (Approx-compa) and maximal regularity for the stationary
Stokes system, we have

(3.20) ‖∇2uεk,nk‖L2(Bnk ) ≤ C‖
√
ρεk,nk0 gεk,nk‖L2(Bnk ) ≤ C‖√ρ0g‖L2(R2) +

1

2
.

We consider the solutions (ρk, uk) to the following mollified version of (INS)

(INS-εk)


∂tρ

k +∇ ·
(
ρk(Kεk ? u

k)
)

= 0,

∂t(ρ
kuk) +∇ ·

(
ρk(Kεk ? u

k)⊗ uk
)

+∇P k = ν∆uk,

∇ · uk = 0.

in the domain Bnk with no-slip boundary condition uk = 0 on ∂Bnk and initial data

(ρk0, u
k
0) := (uεk,nk0 , ρεk,nk0 ).

According to [42, Theorem 2.6], there exists a smooth global-in-time solution (ρk, uk) ∈
C∞([0,∞)×Bnk) to (INS-ε).

Our objective is now to derive uniform estimates in k for the approximate solutions
(ρk, uk). Notice that all the estimates below are on Bnk .11

10Remark that here the assumption that ∇u0 ∈ L1(R2) plays a key role.
11See comment in Footnote 7.
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3.2.2. First uniform estimates. Since (ρk, uk) belongs to C∞([0,∞)×Bnk) and satis-
fies the no-slip boundary condition uk = 0 on ∂Bnk , we have all the estimates from
the proof of [43, Theorem 1.1]. More precisely, we have the following strengthened ver-
sion of Proposition 3.1 that in addition to gradient estimates provides time-weighted
estimates for the convective derivative.

Proposition 3.5 (gradient and convective-derivative estimates; [43, Lemma 3.2, 3.2
and 3.4]). There exists a positive C0 depending only on A0 defined by (3.18) such that
0 ≤ ρk ≤ ρ∗ and

(3.21) ‖(
√
ρkuk,∇uk)‖2

L∞(R+;L2(Bnk )) + ‖(∇uk,
√
ρku̇k,∆uk,∇P k)‖2

L2(R+×Bnk ) ≤ C0

and for all T > 0 it holds that

(3.22) sup
t∈[0,T ]

‖
√
ρktu̇k‖2

L2(Bnk ) +
w T

0
‖
√
t∇u̇k‖2

L2(Bnk ) dt ≤ C0.

Moreover,

(3.23) inf
t∈[0,T ]

w

BN1

ρk(t, x) dx ≥ 1

4
,

for some positive constant N1 depending only on ‖ρ0‖L1(R2), ‖
√
ρ0u0‖L2(R2), N0 and T.

Remark that (3.21) is a combination of estimates [43, (3.4), Lemma 3.2 and Lemma
3.3], (3.22) follows from [43, Lemma 3.3] and (3.23) follows from [43, (3.24)].

At this stage, we want to shift the regularity in order to get L1
tLipx estimate for the

velocity. To achieve it, we first need to show the following spatial-weighted estimates
for the velocity and the density.

Proposition 3.6 (weighted estimates for the velocity and the density). For any T > 0,
there exists a positive constant C0,T depending only on N0 , T and on A0 defined by
(3.18) such that for all a ∈ (2,∞) and b ∈ (0, 1]

(3.24) sup
t∈[0,T ]

‖x̄−buk(t, ·)‖
L
a
b (Bnk )

≤ C0,T ,

sup
t∈[0,T ]

‖x̄−1uk(t, ·)‖L2(Bnk ) ≤ C0,T ,(3.25)

‖x̄−buk‖L2+b(0,T ;L∞(Bnk )) ≤ C0,T .(3.26)

Moreover for α > 1, for all p ∈ [1,∞],

(3.27) sup
t∈[0,T ]

‖x̄αρk(t, ·)‖Lp(Bnk ) ≤ C0,T .

Proof. At first, we prove inequality (3.25). It can be derived directly from classical
weighted inequalities and the uniform estimates in Proposition 3.5. Indeed, estimate
(A.3) with inequality (3.23) and (3.21) implies that there exists a positive constant C
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depending only on ρ∗,m, `,N0, T and norms ‖ρ0‖L1(R2), ‖
√
ρ0u0‖L2(R2) such that(w

Bnk

|uk(t, x)|m

〈x〉2
(ln〈x〉)−` dx

)1/m

≤ C(‖
√
ρkuk‖L2(Bnk ) + ‖∇uk‖L2(Bnk ))(3.28)

≤ C(‖√ρ0u0‖L2(R2) + ‖∇u0‖L2(R2)),

for all m ∈ [2,∞) and ` ∈ (1 + m
2
,∞). Recalling that x̄ = 〈x〉(ln〈x〉)2 and taking

m = 2, ` = 4 in inequality (3.28), we easily get (3.25).
Taking m = 4, ` = 4 in inequality (3.28), we find that

‖〈x〉−1uk(t, ·)‖L4(Bnk ) ≤
(w

Bnk

|uk(t, x)|4〈x〉−2(ln〈x〉)−4 dx

) 1
4

(3.29)

≤ C(‖√ρ0u0‖L2(R2) + ‖∇u0‖L2(R2)),

where we used the fact that

(ln〈x〉)γ ≤ C(γ)〈x〉, for any γ ∈ [1,∞), x ∈ R2.(3.30)

The proof of (3.24) be follows similarly by using (3.28) and (3.30) again.
To prove (3.26), we use the Gagliardo-Nirenberg inequality (A.1) and Young’s in-

equality to write that

‖x̄−buk(t, ·)‖L∞(Bnk ) ≤ C(‖x̄−buk(t, ·)‖
L
a
b (Bnk )

+ ‖∇(x̄−buk(t, ·))‖
L
a
b (Bnk )

)

≤ C(‖x̄−buk(t, ·)‖
L
a
b (Bnk )

+ ‖∇uk(t, ·)‖
L
a
b (Bnk )

).

Thus, taking a = 4, one then has (3.26) thanks to inequality (3.24) and the uniform
estimate (3.21).

Now, we can prove (3.27). Noticing that x̄αρk satisfies

∂t(x̄
αρk) + uk · ∇(x̄αρk) = α(x̄αρk)uk · ∇ ln x̄,

then the standard Lp estimate for the transport equation gives that

‖x̄αρk‖pLp(Bnk ) ≤ C‖x̄αρ0‖pLp(R2) exp(‖uk · ∇ ln x̄‖L1(0,T ;L∞(Bnk ))).

Using the fact that

|∇x̄| ≤ C(ln〈x〉)2, |∇〈x〉| ≤ C, for any x ∈ R2,(3.31)

together with inequalities (A.1), (3.21), (3.29), one obtains
w T

0
‖uk · ∇ ln x̄‖L∞(Bnk ) dt ≤ C

w T

0
‖〈x〉−1uk‖L∞(Bnk ) dt(3.32)

≤ C
w T

0
‖〈x〉−1uk‖

1
2

L4(Bnk )‖∇(〈x〉−1uk)‖
1
2

L4(Bnk ) dt

≤ C
w T

0
‖〈x〉−1uk‖L4(Bnk )‖∇uk‖

1
2

L4(Bnk ) dt

≤ C(‖√ρ0u0‖L2(R2) + ‖∇u0‖L2(R2))
3
2 T

3
4 .

This finishes the proof of Proposition 3.6. �
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3.2.3. Shift of regularity.

Proposition 3.7 (improved higher-order estimates). For any T > 0 and for all r ∈
[2,∞) and q ∈ [2, 2r

r−2
), we have

‖∇2(
√
tuk)‖Lq(0,T ;Lr(Bnk )) + ‖∇(

√
tP k)‖Lq(0,T ;Lr(Bnk )) ≤ C0,T(3.33)

and

sup
t∈[0,T ]

(
‖∇2(

√
tuk)‖L2(Bnk ) + ‖∇(

√
tP k)‖L2(Bnk )

)
≤ C0,T ,(3.34)

where C0,T depends only on N0 , T and on A0 defined by (3.18). Moreover, we have
the following key Lipschitz estimate

w T

0
‖∇uk(t, ·)‖L∞(Bnk ) dt ≤ C0,TT

1
3

and C0,TT
1
3 → 0 as T → 0.

Proof. Applying the standard Lp estimates for Stokes problem (2.13), we have for all
finite p,

‖∇2(
√
tuk)‖Lp(Bnk ) + ‖∇(

√
tP k)‖Lp(Bnk ) ≤ C(p)‖

√
tρu̇k‖Lp(Bnk ).(3.35)

Obviously, inequality (3.22) yields (3.34) directly.
Similarly to the proof of inequality (3.28), applying Proposition A.4 to u̇ implies

that for all r ∈ [2,∞) (taking ` = 2r)(w
Bnk

|
√
tu̇k(t, x)|r

〈x〉2
(ln〈x〉)−2r dx

)1/r

≤ C(‖
√
ρktu̇k‖L2(Bnk ) + ‖

√
t∇u̇k‖L2(Bnk )).

Thus by using α > 1, one has

‖
√
tρu̇k‖Lr(Bnk ) =

(w
Bnk

(x̄αρk)r(〈x〉2−αr(ln〈x〉)2r−2αr|
√
tu̇k|r〈x〉−2(ln〈x〉)−2r dx

)1/r

≤ C‖x̄αρk‖L∞(‖
√
ρktu̇k‖L2(Bnk ) + ‖

√
t∇u̇k‖L2(Bnk )),

which together with inequalities (3.27), (3.22) and (3.35) yields (3.33) in the case q = 2.
Further interpolating with (3.22) this finally implies (3.33).

To prove the Lipschitz estimate, we write by inequalities (A.1), (3.21) and (3.33)
that

w T

0
‖∇uk‖L∞(Bnk ) dt ≤

w T

0
‖∇uk‖

1
3

L2(Bnk )‖∇
2(
√
tuk)‖

2
3

L4(Bnk ) t
− 1

3 dt

≤‖∇uk‖
1
3

L∞(0,T ;L2(Bnk ))‖∇
2(
√
tuk)‖

2
3

L2(0,T ;L4(Bnk ))‖t
− 1

3‖
L

3
2 (0,T )

≤C0,T T
1
3 ,

where C0,T remains bounded when T → 0. �
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3.2.4. Weighted L∞ estimates. In order to prove uniqueness, we need the following
improved weighted-estimate for the velocity, with the help of initial condition (Compa).

Proposition 3.8 (almost boundedness of the velocity). For any T > 0, there exits a
constant C# depending only on the norms ‖g‖L2(R2), ‖∇u0‖L2(R2), ‖∆u0‖L2(R2) and on
C0,T (defined in Proposition 3.7) such that for any b ∈ (0, 1],

(3.36) sup
t∈[0,T ]

‖x̄−buk(t, ·)‖L∞(Bnk ) ≤ C#.

Proof. At first, using the Gagliardo-Nirenberg inequality (A.1) and Young’s inequality,
one has for any a ∈ (2,∞),

‖x̄−buk(t, ·)‖L∞(Bnk ) ≤ C(‖x̄−buk(t, ·)‖
L
a
b (Bnk )

+ ‖∇uk(t, ·)‖
L
a
b (Bnk )

).(3.37)

Let us bound the right-hand-side of (3.37) for a
b

= 4. The bound for the first term
follows simply from (3.24).

It remains to obtain estimate for ∇uk in L∞(0, T ;L4(Bnk)). Estimate (3.34) can be
used to obtain an estimate away from initial time. The difficulty is that this estimate
degenerates near initial time. Our goal is now to get an estimate near t = 0. In order
to achieve this, we need the compatibility condition (Compa). From [43, Lemma 3.3],
we know that there exists a positive constant C depending only on on A0 defined by
(3.18) such that

d

dt

(
‖√ρu̇k‖2

L2(Bnk ) − 2
∑
j=1,2

〈P, ∂juk · ∇(uk)j〉
)

+ ‖∇u̇k‖2
L2(Bnk ) ≤ C‖√ρu̇k‖4

L2(Bnk ).

(3.38)

First, one has for all 0 ≤ τ ≤ t ≤ T

‖√ρu̇k(τ, ·)‖2
L2(Bnk ) = 〈ρu̇k, u̇k〉 = 〈∆uk, u̇k〉 − 〈∇P k, u̇k〉(3.39)

and

〈∆uk, u̇k〉 = 〈(∆uk −∇P k
0 )/
√
ρ,
√
ρku̇k〉+ 〈∇P k

0 , u
k · ∇uk〉

= 〈(∆uk −∇P k
0 )/
√
ρk,
√
ρku̇k〉 −

∑
j=1,2

〈P k
0 , ∂ju

k · ∇(uk)j〉,

and

〈∇P k, u̇k〉 = 〈∇P k, uk · ∇uk〉 = −
∑
j=1,2

〈P k, ∂ju
k · ∇(uk)j〉.

Second, using inequality (3.3) we have

|〈P k − P k
0 , ∂ju

k · ∇(uk)j〉| ≤ ‖P k − P k
0 ‖BMO(R2)‖∂juk‖L2(R2)‖∇(uk)j‖L2(R2)

(3.40)

≤ C(ρ∗)
(
‖√ρ0g‖L2(R2) + ‖

√
ρku̇k‖L2(R2)

)
‖∇uk‖2

L2(R2),

where in the last inequality we used the embedding Ḣ1(R2) ↪→ BMO(R2), the standard
maximal regularity estimates for the stationary Stokes system applied to (INS-εk) and
estimate (3.19) for P k

0 .
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Thus by Hölder’s and Young’s inequalities and (3.40), the identity (3.39) leads to
the following estimate

‖
√
ρku̇k(τ, ·)‖2

L2(Bnk ) ≤ C
(
‖(∆uk −∇P k

0 )/
√
ρk‖2

L2(Bnk )

+ ‖
√
ρkuk · ∇uk‖2

L2(Bnk ) + ‖∇uk‖4
L2(Bnk )

)
.

Moreover, using Hölder’s inequality again, (A.1) and the estimate

sup
t∈[0,T ]

‖√ρuk(t, ·)‖L4(R2) =
(w

R2
(x̄αρ)2〈x〉2−2α(ln〈x〉)4−4α|uk|4〈x〉−2(ln〈x〉)−4 dx

)1/4

≤ C‖x̄αρ‖L∞(R2)

(
‖
√
ρkuk‖L2(R2) + ‖∇uk‖L2(R2)

)
≤ C0,T ,

the above inequality can be further rewritten as

‖
√
ρku̇k(τ, ·)‖2

L2(Bnk ) ≤ C‖(∆uk −∇P k
0 )/
√
ρk‖2

L2(Bnk )

+ C0,T‖∇uk‖L2(Bnk )‖∇2uk‖L2(Bnk ) + ‖∇uk‖4
L2(Bnk ).

Therefore, by the fact that uk ∈ CtH2 and by the approximate compatibility condition
(Approx-compa), we have

(3.41) lim sup
τ→0+

‖√ρu̇k(τ, ·)‖2
L2(Bnk )

≤ C(‖g‖2
L2(R2) + C0,T‖∇u0‖L2(R2)‖∇2u0‖L2(R2) + ‖∇u0‖4

L2(R2)) := C#.

Notice that we used (3.20) to bound ‖∇2uk‖L2(R2) uniformly in k . By a variant of
inequality (3.40), we see that

1

2
‖√ρu̇k(t, ·)‖2

L2(Bnk ) − C‖∇uk(t, ·)‖4
L2(Bnk ) ≤ ‖

√
ρku̇k(t, ·)‖2

L2(Bnk )

− 2
∑
j=1,2

〈P k, ∂ju
k · ∇(uk)j〉|(t).

Then, integrating (3.38) on the time interval [τ, t] and letting τ → 0+ in the resulting
inequality, we obtain that there exits a positive time T# depending only on C# such
that

‖
√
ρku̇k(t, ·)‖2

L2(Bnk ) ≤ CC#, for all time t ∈ (0, T#].(3.42)

Using the standard estimates for the Stokes system, we then get for all t ∈ (0, T#] ,

‖∆uk(t, ·)‖2
L2(Bnk ) + ‖∇P k(t, ·)‖2

L2(Bnk ) ≤ Cρ∗‖
√
ρku̇k(t, ·)‖2

L2(Bnk ) ≤ CC#.

This together with estimate (3.34) implies that

sup
t∈[0,T ]

‖∇2uk(t, ·)‖2
L2(Bnk ) ≤ C(C# + C0,T ).(3.43)
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Finally, from the Gagliardo-Nirenberg inequality (A.1) and (3.21),

sup
t∈[0,T ]

‖∇uk(t, ·)‖L4(Bnk ) ≤ sup
t∈[0,T ]

(‖∇uk(t, ·)‖L2(Bnk ) + ‖∇2uk(t, ·)‖L2(Bnk ))

≤ C(C# + C0,T ).

This completes the proof of proposition 3.8. �

4. Proof of the uniqueness results

In this section, we show the uniqueness of the solutions that we constructed in the
paper, both in the two- and three-dimensional case. The main difficulty we have to
face is that having only bounded solutions can not ensure L2 stability for the transport
equation. Of course, one may reformulate system (INS) in Lagrangian coordinates to
prove uniqueness. The advantage of doing so is obvious: the density is constant along
the flow. However, motivated by Hoff’s paper [30] on the compressible Navier-Stokes
equations, it is possible to directly estimate the difference of the densities in Ḣ−1 (see
for example [17, 21]).

4.1. The case when u is in L2(R2) or L6(R3).

Proposition 4.1 (uniqueness in 2D and 3D under control of a Lebesgue norm of the
velocity). Consider two finite-energy weak solutions (ρ, u) and (ρ̄, ū) (in the sense of
Definition 1.1) to system (INS) corresponding to the same initial data (ρ0, u0) satisfy-
ing (1.2). Assume that

(4.1)

{
∇ū ∈ L∞(0, T ;L2(Rd)) ∩ L1(0, T ;L∞(Rd)),
√
t ˙̄u ∈ L2(0, T ;L6(Rd)), ∇(

√
t ˙̄u) ∈ L2((0, T )× Rd),

and

• In the two-dimensional case, assume in addition that ρ0 satisfies condition
(aNV) or (VB),
• In the three-dimensional case, assume in addition that,

∇u ∈ L4(0, T ;L2(R3)),(4.2)

then (ρ, u) ≡ (ρ̄, ū) on [0, T ]× Rd .12

Proof. We focus on the case when T is small, say T ≤ 1
2
. We remark that a standard

connectivity argument enables us to prove the the case of arbitrary large T .

Step 1: control of the difference of the densities.
Define the difference δρ := ρ− ρ̄ and δu := u− ū, then the system for (δρ, δu) reads

(4.3)


∂tδρ+ ū · ∇δρ+ δu · ∇ρ = 0,

ρ(∂tδu+ u · ∇δu) +∇δP −∆δu = −δρ ˙̄u− ρδu · ∇ū,
∇ · δu = 0,

(δρ, δu)|t=0 = 0.

12Let us stress that the uniqueness is in the class of finite-energy weak solutions. Moreover, notice
that the result in 2D is of weak-strong uniqueness type.
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We perform estimates for δρ in L∞(0, T ; Ḣ−1(Rd) and for δu in L2((0, T ) × Rd). We
remark that the general strategy is the same for dimensions d = 2, 3. To achieve these
estimates, we set

φ := (−∆)−1δρ so that ‖∇φ‖L2(Rd) = ‖δρ‖Ḣ−1(Rd).(4.4)

Now, testing the first equation of (4.3) against φ yields

1

2

d

dt
‖∇φ‖2

L2(Rd) ≤ |〈ū · ∇∆φ, φ〉|+ |〈δu · ∇ρ, φ〉|.(4.5)

For the first term in the right-hand-side of (4.5), using that ∇ · ū = 0 one has

〈ū · ∇∆φ, φ〉 =
∑

1≤i,j≤d

〈ūi∂ijjφ, φ〉 =
∑

1≤i,j≤d

〈∂jūi∂jφ, ∂iφ〉

so that

|〈ū · ∇∆φ, φ〉| ≤ ‖∇ū‖L∞(Rd)‖∇φ‖2
L2(Rd).

As for the second term in the right-hand-side of (4.5), noticing that ∇ · δu = 0, then

〈δu · ∇ρ, φ〉 = −〈δu · ∇φ, ρ〉,
and thus

|〈δu · ∇ρ, φ〉| ≤ √ρ∗‖
√
ρδu‖L2(Rd)‖∇φ‖L2(Rd).

Collecting the above two estimates into (4.5), we discover that

‖∇φ(t, ·)‖L2(Rd) ≤
w t

0
‖∇ū(s, ·)‖L∞(Rd)‖∇φ(s, ·)‖L2(Rd) ds+

√
ρ∗

w t

0
‖√ρδu(s, ·)‖L2(Rd) ds.

Hence, using (4.4) and denoting

D(t) := sup
0<s≤t

s−
1
2‖δρ(s, ·)‖Ḣ−1(Rd),

we get after using Young’s inequality and Gronwall’s lemma, for all t ∈ [0, T ],

D(t) ≤ √ρ∗‖
√
ρδu‖L2((0,t)×Rd) exp(‖∇ū‖L1(0,T ;L∞(Rd))).(4.6)

Step 2: duality argument.

At this stage, in order to control the difference
√
ρδu in L2((0, t)× Rd), we introduce

the solution v to the following linear backward parabolic system:

(4.7)


ρ(∂tv + u · ∇v) +∇Q+ ∆v = ρδu,

∇ · v = 0,

v|t=T = 0.

Let us first claim an important a priori estimate for the above system:

(4.8)

sup
t∈[0,T ]

‖ (
√
ρv,∇v) (t, ·)‖2

L2(Rd) +
w T

0

(
‖∇v(t, ·)‖2

L2 + ‖(√ρv̇,∇2v,∇Q)(t, ·)‖2
L2

)
dt

≤ C‖√ρδu‖2
L2((0,T )×Rd),
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that we prove below. Solving the above problem is not included in the classical theory
for the linear evolutionary Stokes system, since the coefficients are rough and may
vanish. It is not hard to find that if (ρ, u) are regular with ρ bounded from below
away from zero then the existence issue can be solved thanks to the a priori estimate
(4.8). In our setting, the existence may be established by a regularizing procedure of
(ρ, u), after using estimate (4.8), as in the proof of the existence part of Theorem A
and B.

For the moment, we assume that estimate (4.8) is satisfied. Testing the equation of
δu in system (4.3) by v yields that

‖√ρδu‖2
L2((0,T )×Rd) ≤

w T

0
|〈δρ ˙̄u, v〉| dt+

w T

0
|〈ρδu · ∇ū, v〉| dt.(4.9)

We have, by Hölder’s inequality

w T

0
|〈δρ ˙̄u, v〉| dt ≤ ‖t−1/2δρ‖L∞(0,T ;Ḣ−1(Rd))‖

√
t∇( ˙̄u · v)‖L1(0,T ;L2(Rd))

≤ D(T )(‖∇(
√
t ˙̄u)‖L2((0,T )×Rd)‖v‖L2(0,T ;L∞(Rd))+‖

√
t ˙̄u‖L2(0,T ;L6(Rd))‖∇v‖L2(0,T ;L3(Rd))),

and
w T

0
|〈ρδu · ∇ū, v〉| dt ≤ √ρ∗‖

√
ρδu‖L2((0,T )×Rd)‖∇ū‖L∞(0,T ;L2(Rd))‖v‖L2(0,T ;L∞(Rd)).

By estimate (4.8) and Gagliardo-Nirenberg’s inequality [26, Lemma II.3.3], we see that
in 2D

‖v‖L4(0,T ;L∞(R2)) ≤
(w T

0
‖v‖2

L2(R2)‖∇2v‖2
L2(R2) dt

)1/4

≤ C‖(√ρv,∇v)‖1/2

L∞(0,T ;L2(R2))‖∇
2v‖1/2

L2((0,T )×R2)

≤ C‖√ρδu‖L2((0,T )×R2),

and in 3D

‖v‖L4(0,T ;L∞(R3)) ≤
(w T

0
‖∇v‖2

L2(R3)‖∇2v‖2
L2(R3) dt

)1/4

≤ C‖∇v‖1/2

L∞(0,T ;L2(R3))‖∇
2v‖1/2

L2((0,T )×R3)

≤ C‖√ρδu‖L2((0,T )×R3).

Moreover, one has (recall that T ≤ 1/2)

‖∇v‖L2(0,T ;L3(Rd)) ≤ C‖∇v‖1− d
6

L2((0,T )×Rd)
‖∇2v‖

d
6

L2((0,T )×Rd)

≤ CT
1
2
− d

12‖∇v‖1− d
6

L∞((0,T ;L2(Rd))
‖∇2v‖

d
6

L2((0,T )×Rd)

≤ CT
1
3‖√ρδu‖L2((0,T )×Rd).

So that one can conclude that

‖v‖L2(0,T ;L∞(Rd)) + ‖∇v‖L2(0,T ;L3(Rd)) ≤ CT
1
4‖√ρδu‖L2((0,T )×Rd).
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Taking these estimates into (4.9) and using assumption (4.1), we get

‖√ρδu‖2
L2((0,T )×Rd) ≤ CT

1
3 (D(T )‖√ρδu‖L2((0,T )×Rd) + ‖√ρδu‖2

L2((0,T )×Rd)).

This together with inequality (4.6) implies that if T is small enough then
√
ρδu ≡ 0 and D(t) ≡ 0 on [0, T ].

Now, since we already know that
√
ρδu and δρ are zero on [0, T ], a direct L2 estimate

for the equation of δu in system (4.3) gives directly that
w t

0
‖∇δu(s, ·)‖2

L2(Rd) ds = 0.(4.10)

In the 2D case, using again the condition (aNV) or (VB) together with Proposition
A.6, one gets δu ≡ 0 on [0, T ]. In the 3D case, one gets same conclusion by recalling
that δu ∈ L2(R+;L6(R3)).

Step 3: proof of estimate (4.8).

It remains to prove estimate (4.8). Actually, the proof is similar to Proposition 3.1.
To achieve it, we proceed as follows. At first, testing the equation by v, one finds that

(4.11) sup
t∈(0,T )

‖√ρv(t, ·)‖2
L2(Rd) +

w T

0
‖∇v(t, ·)‖2

L2(Rd) dt

≤ ‖√ρδu‖2
L2((0,T )×Rd) + T sup

t∈(0,T )

‖√ρv(t, ·)‖2
L2(Rd).

Secondly, in order to obtain the higher-order estimates of v , we apply the standard
maximal regularity estimates for the stationary Stokes system to (4.7) to get that for
any p ∈ (1,∞),

(4.12) ‖∆v‖Lp(Rd) + ‖∇Q‖Lp(Rd) ≤ C(p)‖ρv̇‖Lp(Rd) ≤ C(p)
√
ρ∗‖
√
ρv̇‖Lp(Rd).

Testing the first equation of (4.7) by v̇ gives that

‖√ρv̇(t, ·)‖2
L2(Rd) + 〈∆v, v̇〉+ 〈∇Q, v̇〉 = 〈ρδu, v̇〉.

Since

〈∆v, v̇〉 = − d

dt
‖∇v‖2

L2 +
∑

1≤i,j,k≤d

〈∂kkvi, uj∂jvi〉

and

〈∂kkvi, uj∂jvi〉 = −〈∂kvi, ∂kuj∂jvi〉.

thus

− d

dt
‖∇v‖2

L2 + ‖√ρv̇(t, ·)‖2
L2(Rd) = 〈ρδu, v̇〉 − 〈∇Q, v̇〉+

∑
1≤i,j,k≤d

〈∂kvi, ∂kuj∂jvi〉.

(4.13)
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Note that in the 2D case, we have by the Gagliardo-Nirenberg inequality (A.1)∑
1≤i,j,k≤d

|〈∂kvi, ∂kuj∂jvi〉| ≤C‖∇v‖2
L4(R2)‖∇u‖L2(R2)(4.14)

≤C‖∇v‖L2(R2)‖∇2v‖L2(R2)‖∇u‖L2(R2)

≤ 1

Cρ∗
‖∇2v‖2

L2(R2) + Cρ∗‖∇u‖2
L2(R2)‖∇v‖2

L2(R2),

while in the 3D case,∑
1≤i,j,k≤d

|〈∂kvi, ∂kuj∂jvi〉| ≤C‖∇v‖2
L4(R3)‖∇u‖L2(R3)(4.15)

≤C‖∇v‖
1
2

L2(R3)‖∇
2v‖

3
2

L2(R3)‖∇u‖L2(R3)

≤ 1

Cρ∗
‖∇2v‖2

L2(R3) + Cρ3
∗‖∇u‖4

L2(R3)‖∇v‖2
L2(R3).

Meanwhile, using that ∇ · v = 0, we write

〈∇Q, v̇〉 = −〈Q,∇ · (u · ∇v)〉 = −
∑

1≤i,j≤d

〈Q, ∂iuj∂jvi〉 = −
∑

1≤i≤d

〈Q, ∂iu · ∇vi〉.

Therefore in the 2D case, inequality (3.3) implies

|〈∇Q, v̇〉| ≤ C‖Q‖BMO(R2)‖∇u‖L2(R2)‖∇v‖L2(R2)(4.16)

≤ C‖∇Q‖L2(R2)‖∇u‖L2(R2)‖∇v‖L2(R2)

≤ 1

Cρ∗
‖∇Q‖2

L2(R2) + Cρ∗‖∇u‖2
L2(R2)‖∇v‖2

L2(R2).

As for the 3D case, one has

|〈∇Q, v̇〉| ≤ C‖Q‖L6(R3)‖∇u‖L2(R3)‖∇v‖L3(R3)(4.17)

≤ C‖Q‖D1,2(R3)‖∇u‖L2(R3)‖∇v‖
1
2

L2(R3)‖∇
2v‖

1
2

L2(R3)

≤ 1

Cρ∗
(‖∇2v‖2

L2 + ‖Q‖2
D1,2(R3)) + Cρ3

∗‖∇u‖4
L2(R3)‖∇v‖2

L2(R3).

It is easy to find that

|〈ρδu, v̇〉| ≤ ‖√ρδu‖L2(Rd)‖
√
ρv̇‖L2(Rd).

Putting the above estimate and (4.12), (4.14)-(4.17) into (4.13), we conclude after
applying Gronwall’s lemma that, in the 2D case

sup
t∈(0,T )

‖∇v(t, ·)‖2
L2(R2) +

w T

0
‖(√ρv̇,∇2v,∇Q)(t, ·)‖2

L2(R2) dt

≤ ‖√ρδu‖2
L2((0,T )×R2) exp(Cρ∗‖

√
ρ0u0‖2

L2(R2))
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and in the 3D case

sup
t∈(0,T )

‖∇v(t, ·)‖2
L2(R3) +

w T

0
‖(√ρv̇,∇2v,∇Q)(t, ·)‖2

L2(R3) dt

≤ ‖√ρδu‖2
L2((0,T )×R3) exp(Cρ3

∗‖∇u‖4
L4(0,T ;L2(R3))).

Finally, these estimates together with estimate (4.11) prove (4.8). This completes the
proof of Proposition 4.1. �

4.2. The case of two-dimensional far-field vacuum.

Proposition 4.2 (uniqueness in 2D in the case of far-field vacuum). Let d = 2.
Consider two finite-energy weak solutions (ρ, u) and (ρ̄, ū) (in the sense of Definition
1.1) to system (INS) corresponding to the same initial data (ρ0, u0) satisfying (1.2).
Assume in addition that13 ρx̄α ∈ L∞(0, T ;L1(R2)) ∩ L∞((0, T )× R2) and
(4.18)
x̄−1ū ∈ L∞(0, T ;L2(R2)), x̄−1ū, x̄−1u ∈ L∞((0, T )× R2), 〈x〉−1ū ∈ L1(0, T ;L∞(R2)),

∇ū ∈ L∞(0, T ;L2(R2)) ∩ L1(0, T ;L∞(R2)),

∇(
√
t ˙̄u) ∈ L2((0, T )× R2),

√
t ˙̄ux̄−β ∈ L2(0, T ;L6(R2)) for some β ∈

(1

3
,
1

2

)
.

Then (ρ, u) ≡ (ρ̄, ū) on [0, T ]× R2 .14

Proof. Step 1: control of the difference of the densities.

Recall the system (4.3) satisfied by the difference. We define15 δ% := x̄βδρ (note that
β < α

2
) and thus get the following equation

∂tδ%+ ū · ∇δ%+ x̄βδu · ∇ρ = βδ%ū · ∇ ln x̄.(4.19)

In contrast to the previous subsection, we define an inhomogeneous version of the test
function for the duality proof, namely

φ := (Id−∆)−1δ% so that ‖φ‖H1(R2) = ‖δ%‖H−1(R2).(4.20)

Now, testing the first equation of (4.19) against φ yields that

1

2

d

dt
‖φ‖2

H1(R2) ≤ |〈ū · ∇∆φ, φ〉|+ |〈x̄βδu · ∇ρ, φ〉|+ β|〈∆φū · ∇ ln x̄, φ〉|

+ β|〈φū · ∇ ln x̄, φ〉|.(4.21)

First term in the right-hand-side of (4.21). One has

|〈ū · ∇∆φ, φ〉| ≤ ‖∇ū‖L∞(R2)‖∇φ‖2
L2(R2).(4.22)

13Here as in the whole paper α > 1, see (FFV-2).
14Notice that the uniqueness is for finite-energy weak solutions. However, this result is not of

weak-strong uniqueness type.
15Notice that in contrast with Subsection 4.1, we work here, in the far-field case, with a weighted

version of the difference of the densities.
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Second term in the right-hand-side of (4.21). Noticing that ∇ · δu = 0, we get

〈x̄βδu · ∇ρ, φ〉 = −〈δu · ∇φ, x̄βρ〉 − 〈δu · ∇x̄β, ρφ〉.(4.23)

By Hölder’s inequality

|〈δu · ∇φ, x̄βρ〉| ≤ ‖√ρδu‖L2(R2)‖∇φ‖L2(R2)‖
√
ρx̄β‖L∞(R2)(4.24)

≤ ‖√ρδu‖L2(R2)‖∇φ‖L2(R2)(1 + ‖ρx̄2β‖L∞(R2)).

For the second term in the right-hand-side of (4.23) we use the following inequality
from [44, Theorem 1.1] which is valid for any BMO(R2) function f with compact
support and g ∈ L1(R2) ∩ L∞(R2),

|〈f, g〉| ≤ C‖f‖BMO(R2) ‖g‖L1(R2)

(
| ln ‖g‖L1(R2)|+ ln(e+ ‖g‖L∞(R2))

)
,(4.25)

with the functions f = φ, g = ρδu·∇x̄β. In particular, we use that t−
1
2φ ∈ L∞(0, T ;H1(R2))

and the fact that the space D(R2) of smooth compactly supported functions on R2 is
dense in H1(R2). Noticing

‖ρδu · ∇x̄β‖L1(R2) ≤ C‖√ρδu‖L2(R2)‖
√
ρx̄β−1(ln〈x〉)2‖L2(R2)

≤ C‖√ρδu‖L2(R2)‖ρx̄2β‖
1
2

L1 ,

and that

‖ρδu · ∇x̄β‖L∞(R2) ≤ ‖ρx̄β(ln〈x〉)2‖L∞(R2)‖x̄−1δu‖L∞(R2)

≤ C‖ρx̄2β‖L∞(R2)(‖x̄−1u‖L∞(R2) + ‖x̄−1ū‖L∞(R2)),

we see that estimate (4.25) yields

|〈δu · ∇x̄β, ρφ〉| ≤ C‖φ‖BMO(R2)‖
√
ρδu‖L2(R2)(| ln ‖ρδu · ∇x̄β‖L1(R2)|+ C)

≤ C‖∇φ‖L2(R2)‖
√
ρδu‖L2(R2),

where in order to get the last inequality, we used the embedding Ḣ1(R2) ↪→ BMO(R2)
and that

‖ρδu · ∇x̄β‖L1(R2) ≤ ‖ρx̄β(ln〈x〉)2‖L1(R2)‖x̄−1δu‖L∞(R2)

≤ C‖ρx̄2β‖L1(R2)(‖x̄−1u‖L∞(R2) + ‖x̄−1ū‖L∞(R2)) ≤ C.

These results combined with inequality (4.24) imply that

|〈x̄βδu · ∇ρ, φ〉| ≤ C‖∇φ‖L2(R2)‖
√
ρδu‖L2(R2).(4.26)

Third term in the right-hand-side of (4.21). We rewrite it into

|〈∆φū · ∇ ln x̄, φ〉| ≤ |〈∇φ · ∇(ū · ∇ ln x̄), φ〉|+ |〈|∇φ|2, ū · ∇ ln x̄〉|.(4.27)

Similarly, as above one has

|〈∇φ · ∇(ū · ∇ ln x̄), φ〉| ≤‖∇φ‖L2(R2)‖∇φ · ∇(ū · ∇ ln x̄)‖H1(R2).
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We now rely on (4.25) with f := ∇φ · ∇(ū · ∇ ln x̄) to estimate the right-hand-side in
the previous estimate. Noticing from inequalities (3.30) and (3.31) that

‖∇φ · ∇(ū · ∇ ln x̄)‖L1(R2) ≤ ‖∇φ‖L2(R2)(‖∇ū∇ ln x̄‖L2(R2) + ‖ū〈x〉−2‖L2(R2))

≤ C‖∇φ‖L2(R2)(‖∇ū‖L2(R2) + ‖ūx̄−1‖L2(R2))

and additionally using the Gagliardo-Nirenberg inequality (A.1) we have

‖∇φ · ∇(ū · ∇ ln x̄)‖L∞(R2) ≤ C‖∇φ‖L∞(R2)(‖∇ū‖L∞(R2) + ‖ūx̄−1‖L∞(R2))

≤ C(‖∇φ‖L2(R2) + ‖x̄βδρ‖L4(R2))(‖∇ū‖L∞(R2) + ‖ūx̄−1‖L∞(R2)).

Thus one has

|〈∇φ · ∇(ū · ∇ ln x̄), φ〉| ≤ C‖∇φ‖2
L2(R2)(| ln ‖∇φ‖L2(R2)|+ ‖∇ū‖L∞(R2) + ‖ūx̄−1‖L∞(R2) + 1).

(4.28)

For the remaining term in (4.27), notice that

|〈|∇φ|2, ū · ∇ ln x̄〉| ≤ ‖∇φ‖2
L2(R2)‖ū〈x〉−1‖L∞(R2).

Fourth term in the right-hand-side of (4.21). By the same reasoning as above, we have

|〈φū · ∇ ln x̄, φ〉| ≤ ‖φ‖2
L2(R2)‖ū · ∇ ln x̄‖L∞(R2)

≤ C‖φ‖2
L2(R2)‖ū〈x〉−1‖L∞(R2).(4.29)

Final estimate of (4.21). Putting the above estimates (4.22), (4.26), (4.28), (4.29)
together into (4.21), we get

d

dt
‖φ(t, ·)‖2

H1(R2) ≤C‖φ‖2
H1(R2)(| ln ‖φ‖H1(R2)|+ ‖∇ū‖L∞(R2) + ‖ū〈x〉−1‖L∞(R2) + 1)

+ ‖φ‖H1(R2)‖
√
ρδu‖L2(R2).

Hence, denoting

D̄(t) := sup
0<s≤t

s−
1
2‖δ%(s, ·)‖H−1(R2),

we further get that for all t ∈ [0, T ],

D̄(t) ≤C
w t

0
D̄(s)

(
| ln D̄(s)|+ | ln s|+ ‖∇ū‖L∞(R2) + ‖ū〈x〉−1‖L∞(R2) + 1

)
ds(4.30)

+ C‖√ρδu‖L2((0,t)×R2).

Step 2: duality argument.

At this stage, in order to control the difference
√
ρδu in L2((0, t)×R2), we will estimate

the solution v to the linear backward parabolic system (4.7) as in Subsection 4.1.
Indeed, in our current setting, the solvability of problem (4.7) can be achieved by
following the steps in Subsection 3.2. Moreover, similarly to estimate (4.8) and also to
(3.24), (3.26), we have

(4.31)

sup
t∈(0,T )

‖ (
√
ρv,∇v) (t, ·)‖L2(R2) + ‖(∇v,∇2v)‖L2(0,T ;L2(R2)) + ‖x̄−βv‖L2+β(0,T ;L∞(R2))

+ ‖x̄−
1
2
−βv‖L∞(0,T ;L3(R2)) ≤ C‖√ρδu‖L2((0,T )×R2).
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Now, recall that

‖√ρδu‖2
L2((0,T )×R2) ≤

w T

0
|〈δρ ˙̄u, v〉| dt+

w T

0
|〈ρδu · ∇ū, v〉| dt.(4.32)

By Hölder’s inequality
w T

0
|〈ρδu · ∇ū, v〉| dt

≤‖√ρδu‖L2((0,T )×R2)‖∇ū‖L∞(0,T ;L2(R2))‖
√
ρv‖L2(0,T ;L∞(R2))

≤C‖√ρδu‖L2((0,T )×R2)‖∇ū‖L∞(0,T ;L2(R2))‖x̄−βv‖L2(0,T ;L∞(R2))(1 + ‖ρx̄2β‖L∞((0,T×R2)),

and
w T

0
|〈δρ ˙̄u, v〉| dt ≤ ‖t−1/2δρx̄β‖L∞(0,T ;Ḣ−1(R2))‖

√
t∇(x̄−β ˙̄u · v)‖L1(0,T ;L2(R2))

≤ D̄(T )‖
√
t∇(x̄−β ˙̄u · v)‖L1(0,T ;L2(R2)).

Using inequalities (3.30), (3.31) and β < 1
2
, we have

|∇(x̄−β ˙̄u · v)| ≤ C(|∇ ˙̄u||x̄−βv|+ | ˙̄ux̄−β||∇v|+ | ˙̄ux̄−β||vx̄−
1
2
−β|),

which implies that

‖
√
t∇(x̄−β ˙̄u · v)‖L1(0,T ;L2(R2))

≤‖
√
t∇ ˙̄u‖L2((0,T )×R2)‖x̄−βv‖L2(0,T ;L∞(R2)) + ‖

√
t ˙̄ux̄−β‖L2(0,T ;L6(R2))‖∇v‖L2(0,T ;L3(R2))

+ T
1
2‖
√
t ˙̄ux̄−β‖L2(0,T ;L6(R2))‖vx̄−

1
2
−β‖L∞(0,T ;L3(R2))

So by estimate (4.31) we can bound the right-hand-side of (4.32) and get

‖√ρδu‖2
L2((0,T )×R2) ≤ CT

β
6

(
D̄(T )‖√ρδu‖L2((0,T )×R2) + ‖√ρδu‖2

L2((0,T )×R2)

)
.

Clearly, the above inequality implies that, if T is small enough then

‖√ρδu‖L2((0,T )×R2) ≤ CD̄(T )T
β
6 .(4.33)

Putting the above inequality into (4.30), we get for T small enough

D̄(T ) ≤ C

(w T

0
D̄(t)

(
‖∇ū‖L∞(R2) + ‖ū〈x〉−1‖L∞(R2) + | ln D̄(t)| − ln t

)
dt

)
.

From Osgood’s lemma [6, Lemma 3.4], we then infer that D̄(t) ≡ 0 on [0, T ], and thus√
ρδu ≡ 0, δρ ≡ 0 on [0, T ] thanks to inequality (4.33) and equation (4.19), respectively.

Finally, δu ≡ 0 and δρ ≡ 0 on [0,∞) can be concluded similarly as previous subsection.
In particular, one needs to use the functional inequality (3.28). �

4.3. Proof of uniqueness. To complete the proof of uniqueness part of Theorem A
and Theorem B, it suffices to observe that all the assumptions in Proposition 4.1 and
Proposition 4.2 are satisfied by those solutions constructed in Theorem A and Theorem
B. �
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5. Proof of Theorem C

We remark that the general strategy is the same in dimensions d = 2 and 3. Assume
that ∂Ω0 corresponds to the level set {f0 = 0} of some C1,γ function f0 : Ω0 → R.
Then we know that ∂Ωt = X(t, f−1

0 ({0})) corresponds to the level set {ft = 0} with
ft := f0 ◦(X(t, ·))−1, where (X(t, ·))−1 is the inverse function of X(t, ·). Indeed, as the
flow is incompressible, the Jacobian of X is identically equal to 1. Hence the classical
inverse function theorem ensures the existence and regularity of X−1.

Now, fix some T > 0. In the 2D case, according to Theorem A, for all r ∈ [2,∞) we
can find q > 2 such that

‖∇2u‖L1(0,T ;Lr(R2) ≤ ‖∇2(
√
tu)‖Lq(0,T ;Lr(R2))‖t−

1
2‖Lq′ (0,T ) ≤ C0,T

and by the Gagliardo-Nirenberg inequality (A.1) and Young’s inequality

‖∇u‖L1(0,T ;Lr(R2) ≤ C(‖∇u‖L1(0,T ;L2(R2)) + ‖∆u‖L1(0,T ;L2(R2))) ≤ C0,T .

By Sobolev’s embedding, one has ∇u ∈ L1(0, T ; C0,γ) for all γ ∈ (0, 1). Consequently,
the flow X(t, ·) is C0,γ and so is ft.

For the 3D case, Theorem B ensures that for all r ∈ [2, 6), ∇u ∈ L1(0, T ;Lr(R3)) and
we can find q > 2 such that ∇2(

√
tu) ∈ Lq(0, T ;Lr(R3)). Thus ∇u ∈ L1(0, T ;W 1,r(R3)).

This finally implies that ft is a C0,γ function, if γ < 1
2
. �

A. Functional spaces and inequalities

For the reader’s convenience, we here recall a few results that are used repeatedly in
the paper. Let us first recall the definitions of homogeneous Sobolev spaces.

Definition A.1 (homogeneous Sobolev space). Let s be in R. The homogeneous
Sobolev space Ḣs(Rd) is the set of tempered distributions u on Rd, with Fourier trans-
form in L1

loc(Rd), satisfying

‖u‖Ḣs(Rd) := ‖|ξ|sF(u)(ξ)‖L2(Rd) <∞.

We often use the following Gagliardo-Nirenberg inequalities.

Proposition A.2 (Gagliardo-Nirenberg inequalities; [26, Lemma II.3.3]). If (q, r) ∈
(1,∞)2 , there exists a constant C depending on q and r such that

(A.1) ‖z‖Lp(Rd) ≤ C‖∇z‖θLr(Rd)‖z‖
1−θ
Lq(Rd)

with 1
p

= θ
(

1
r
− 1

d

)
+ 1−θ

q
, 0 ≤ θ ≤ 1.

Let us now recall some properties of the spaces D̃1,2(R2) and D1,2(R3) that are used
in the paper. For more details, see Appendix A and B of [42]. The first one is the

following weighted estimate for elements of the space D̃1,2(R2).

Lemma A.3 ([42, Theorem B.1]). For m ∈ [2,∞) and ` ∈ (1 + m
2
,∞), there exists a

positive constant C depending on m and l such that for all z ∈ D̃1,2(R2),(w
R2

|z|m

〈x〉2
(log〈x〉)−` dx

)1/m

≤ C
(
‖z‖L2(B1) + ‖∇z‖L2(R2)

)
.(A.2)
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Then one has the following Proposition due to Li and Xin [37], which is a combination
of Lemma A.3 with the Poincaré inequality; see [37], (2.6) and (2.8) in the proof of
Lemma 2.4 therein.

Proposition A.4 ([37, Lemma 2.4]). Let m ∈ [2,∞) and ` ∈ (1 + m
2
,∞). Let

z ∈ D̃1,2(R2) and η ∈ L∞(R2). Assume that
√
ηz ∈ L2(R2) and satisfies

0 ≤ η ≤ η∗, M ≤
w

BR
η dx,

for positive constants η∗,M,R. Then there exists a positive constant C depending only
on m, `, η∗,M,R such that

(A.3)

(w
R2

|z|m

〈x〉2
(log〈x〉)−` dx

)1/m

≤ C(‖√ηz‖L2(R2) + ‖∇z‖L2(R2)).

We also needed the following conditional L2 bound for elements of the space D̃1,2(R2).

Lemma A.5 ([42, Lemma B.1 and Remark B.1]). D̃1,2(R2) is a Hilbert space for the
scalar product 〈∇z,∇w〉+ 〈1B1 z, w〉 and an equivalent norm is given by ‖∇z‖L2(R2) +

|
r
B1
z dx|. Moreover, we have D̃1,2(R2)∩(L1(R2)+L2(R2)) ↪→ H1(R2), more precisely,

there exists a constant C > 0 such that for all z ∈ D̃1,2(R2) satisfying z = z1 +z2 with
z1 ∈ L1(R2), z2 ∈ L2(R2)

(A.4) ‖z‖L2(R2) ≤ C
(
‖z1‖

1
2

L1(R2)‖∇z‖
1
2

L2(R2) + ‖z2‖L2(R2)

)
.

A similar result holds for all z ∈ D1,2(R3). There exists a constant C > 0 such that
for all z ∈ D1,2(R3) satisfying z = z1 + z2 with z1 ∈ L1(R3), z2 ∈ L2(R3)

(A.5) ‖z‖L2(R3) ≤ C
(
‖z1‖

2
5

L1(R3)‖∇z‖
3
5

L2(R3) + ‖z2‖L2(R3)

)
.

Then based on Lemma A.5, we have

Proposition A.6 (interpolation estimate). Let d = 2, 3. For all z ∈ D̃1,2(R2) or
D1,2(R3) and all non-negative function η ∈ L∞(Rd) that satisfies either

(A.6) (1/η) 1η<δ0 ∈ L1(Rd), for some δ0 > 0,

or

(A.7) (η − η)+ ∈ Lp(Rd), for some η ∈ (0,∞), p ∈ (d/2,∞),

there exists a constant C∗ depending on d, δ0 and ‖(1/η) 1η<δ0‖L1 in the case when
(A.6) is satisfied, p, d, η̄ and ‖(η̄ − η)+‖Lp in the case when (A.7) is satisfied, such
that

(A.8) ‖z‖L2(Rd) ≤ C∗(‖
√
ηz‖L2(Rd) + ‖∇z‖L2(Rd)).

Proof. We first consider η satisfying (A.7). It is easy to check that√
η ≤

√
(η − η)+ +

√
η.
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We then write by Hölder’s inequality, the Gagliardo-Nirenberg inequality in Proposition
A.2 and Young’s inequality that√

η‖z‖L2(Rd) ≤‖
√

(η − η)+ z‖L2(Rd) + ‖√ηz‖L2(Rd)

≤‖(η − η)+‖
1
2

Lp(Rd)
‖z‖

L
2p
p−1

+ ‖√ηz‖L2(Rd)

≤C‖(η − η)+‖
1
2

Lp(Rd)
‖z‖

1− d
2p

L2(Rd)
‖∇z‖

d
2p

L2(Rd)
+ ‖√ηz‖L2(Rd)

≤C‖(η − η)+‖
d
p

Lp(Rd)
‖∇z‖L2(Rd) +

√
η

2
‖z‖L2(Rd) + ‖√ηz‖L2(Rd),

which enables us to obtain (A.8).
If (A.6) is satisfied, we decompose

z = z 1η<δ0 + z 1η≥δ0

and write that

‖z 1η≥δ0‖L2(Rd) ≤
1√
δ0

‖√ηz 1η≥δ0‖L2(Rd) ≤
1√
δ0

‖√ηz‖L2(Rd),

‖z 1η<δ0‖L1(Rd) ≤ ‖
√
ηz‖L2(Rd)‖(1/

√
η) 1η<δ0‖L2(Rd)

≤ ‖√ηz‖L2(Rd)‖(1/η) 1η<δ0‖
1
2

L1(Rd)
.

We complete the proof by using Lemma A.5 and Young’s inequality. �
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Laboratoire de Mathématiques AGM, UMR CNRS 8088, Cergy Paris Université, 2 Av-
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