
Lecture 5: Interior and Boundary Layer Correctors

Christophe Prange∗

February 15, 2016

In this lecture, we consider divergence form elliptic equations with coefficients
A = (Aαβ(y)), though all the results carry over to elliptic systems. The coefficients
are not assumed to be symmetric and, in addition to ellipticity, we assume A ∈
L∞(Td). If smoothness on A is required, it will be stated clearly.

1 Bounded correctors in quasiperiodic homogeniza-
tion

In this part of the lecture, we consider the homogenization of equations with quasiperi-
odic coefficients

−∇ · A(x/ε)∇uε = f, x ∈ Ω. (1.1)

A quasiperiodic function is the restriction of a periodic function to a linear subspace.
More precisely, we assume that there exist an integer m ≥ d, a Zm-periodic matrix
B = B(θ), θ ∈ Tm, and a constant matrix N ∈Mmd(R), such that

A(y) = B(Ny), ∀y ∈ Rd. (1.2)

Assume, in the whole section, that

∀k ∈ Zm, k 6= 0, ∀1 ≤ α ≤ d, (NTk)α =
m∑
β=1

Nβαkβ 6= 0. (1.3)

We have explained in the fourth lecture that the homogenization of (1.1) can be
recast into the framework of stochastic homogenization. Under assumption (1.3),
the dynamical system T is ergodic. This gives the homogenization for µ-almost every
realization ω ∈ Σ, which is of course a weaker result than individual homogenization,
i.e. for any given quasiperiodic microstructure. Moreover, we have proved the
existence of a random variable γεα = γα(ω) so that

γα ∈ L2
pot(Σ), A(ω)γα ∈ L2

sol(Σ) and E(γα) = eα.

For fixed ω ∈ Σ, there exists a potential function vα = vα(·, ω) for the stationary
field γα(T (·)ω): for all y ∈ Rd,

γα(T (y)ω) = ∇yvα(y, ω).
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Therefore,
−∇y · A(T (y)ω)∇yvα(y, ω) = 0,

and χα(y, ω) := vα(y, ω)− yα solves the cell problem (corrector problem)

−∇ · A(T (y)ω)∇yχ
α(y, ω) = ∂yγA

γα(T (y)ω), y ∈ Rd.

Here are the facts:

(1) We know that γα(T (y)ω) is stationary, thus for all y ∈ Rd,

γα(T (y)ω) = γα(ω +Ny),

which means that γα(T (·)ω) is quasiperiodic.

(2) The potential vα(y, ω) on the contrary has no reason to be stationary. In
particular it may not be quasiperiodic. We have in general no clue on how
this potential grows at infinity.

The second point is crucial in order to get error estimates in homogenization.
We focus on the (deterministic) quasiperiodic corrector problem

−∇ · A(y)∇yχ
α(y) = ∂yγA

γαA(y), y ∈ Rd, (1.4)

assuming that A satisfies (1.2). The first results on the existence of bounded
quasiperiodic solutions to (1.4) are due to Kozlov [Koz78].

Auxiliary problem on the torus

Proving the existence of quasiperiodic correctors to (1.4) cannot be done in full
generality on N even satisfying the non degeneracy condition (1.3). In the course
of the proof we will add a diophantine condition on N . Use of this assumption will
in turn cause a loss of derivatives in the estimates. We therefore work assuming in
addition that

A ∈ C∞(Rd).

Let us look for χα = χα(y) for which

there exists Xα = Xα(θ), θ ∈ Tm, so that for all y ∈ Rd, χα(y) = Xα(Ny).

If there exists an Xα solving

−NT∇θ ·B(θ)NT∇θX
α = NT∇θ ·B·α, θ ∈ Tm, and −

ˆ
Tm
Xα(θ)dθ = 0, (1.5)

and if in addition Xα is C∞, then χα defined by for all y ∈ Rd, χα(y) = Xα(Ny), is
a solution of (1.4).

The drawback of the problem (1.5) is that the gradient NT∇θ is degenerate, so
that the equation is not elliptic any more. For any ϕ = ϕ(θ), θ ∈ Tm,

λ

ˆ
Tm

∣∣NT∇θϕ
∣∣2 ≤ ˆ

Tm
B(θ)NT∇θϕ ·NT∇θϕ,
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so that we only control the L2(Tm) norm of the degenerate gradient NT∇θϕ, not the
whole gradient ∇θϕ. For example take m = 2, d = 1, NT = (n1, n2) and ϕ(θ) = eik·θ

for fixed k ∈ Z2. Then
ˆ
Tm

∣∣NT∇θϕ
∣∣2 = |n1k1 + n2k2|2 = |n · k|2

which does not bound
ˆ
Tm
|∇θϕ|2 = k21 + k22 ≥ 1, ∀k 6= 0.

uniformly in k1 and k2 in Z. Indeed, either

n1k1 + n2k2 = 0

for some k ∈ Z2 \ {0} (if N ∈ RZ2), or for any ε > 0, there exists k ∈ Z2 \ {0} such
that

|n1k1 + n2k2| < ε.

The issue of non ellipticity in (1.5) can be handled by adding a viscous regularization
to the equation

−NT∇θ ·B(θ)NT∇θX
α
κ − κ∆Xα

κ = NT∇θ ·B·α, θ ∈ Tm.

The key is to get a priori estimates on Xα
κ uniform in κ.

The main advantage of (1.5) is that it is posed on the torus Tm and not on the
whole space. We have thus gained compactness.

A priori estimates

We carry out a priori estimates on (1.5).

Energy estimate Multiplying by Xα and integrating by parts on Tm we get
ˆ
Tm
B(θ)NT∇θX

α ·NT∇θX
α = −

ˆ
Tm
B·α ·NT∇θX

α.

Therefore

λ

ˆ
Tm

∣∣NT∇θX
α
∣∣2 ≤ ‖B·α‖L∞(Tm)

(ˆ
Tm

∣∣NT∇θX
α
∣∣2)1/2

,

so that

λ

(ˆ
Tm

∣∣NT∇θX
α
∣∣2)1/2

≤ ‖B·α‖L∞(Tm). (1.6)
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Estimates on the derivatives Let 1 ≤ γ ≤ m. Differentiating (1.5) with respect
to ∂θγ , we get

−NT∇θ ·B(θ)NT∇θ∂θγX
α = NT∇θ · ∂θγB·α +NT∇θ · ∂θγB(θ)NT∇θX

α.

We now integrate toward ∂θγXα and get
ˆ
Tm
B(θ)NT∇θ∂θγX

α ·NT∇θ∂θγX
α = −

ˆ
Tm
B·α ·NT∇θ∂θγX

α

−
ˆ
Tm
∂θγB(θ)NT∇θX

α ·NT∇θ∂θγX
α.

Consequently,

λ

ˆ
Tm

∣∣NT∇θ∂θγX
α
∣∣2 ≤ ‖B·α‖L∞(Tm)

(ˆ
Tm

∣∣∂θγNT∇θX
α
∣∣2)1/2

+ ‖∂θγB(θ)‖L∞(Tm)

(ˆ
Tm

∣∣NT∇θX
α
∣∣2)1/2(ˆ

Tm

∣∣NT∇θ∂θγX
α
∣∣2)1/2

,

so that combining with the a priori estimate (1.6) on Xα we get

λ

(ˆ
Tm

∣∣NT∇θ∂θγX
α
∣∣2)1/2

≤ C,

with C = C
(
‖B·α‖L∞(Tm), ‖∂θγB(θ)‖L∞(Tm)

)
.

By iteration, one can therefore prove the following proposition.

Proposition 1. For all multi-index γ ∈ Nm, the weak solution Xα of (1.5) satisfies(ˆ
Tm

∣∣NT∇θ∂
γ
θX

α
∣∣2)1/2

≤ C,

with C = C (λ, ‖B‖C|γ|).

Poincaré inequality

We have already seen that the L2 norm of NT∇θϕ does not control ∇θϕ.
Question. At what condition on the matrix N doesˆ

Tm

∣∣NT∇θϕ
∣∣2

control lower-order derivatives of ϕ?
We aim for some sort of Poincaré inequality for ϕ = ϕ(θ) of mean zero.
Assume that the following diophantine condition, small divisors condition, is

satisfied:
there exist C > 0, τ > 0, such that for all k ∈ Zm \ {0},

for all 1 ≤ α ≤ d,
∣∣(NTk)α

∣∣ ≥ C

|ξ|d+τ
.

(1.7)

Notice that for all 1 ≤ α ≤ d, (NTk)α = Nγαkγ. We stress that the diophantine
condition holds on every component of the d-dimensional vector NTk.
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Lemma 2. There exists a constant C > 0 such that for any ϕ = ϕ(θ), ϕ ∈
Hd+τ (Tm), ˆ

Tm
|ϕ− ϕ|2 ≤ C‖ϕ‖Ḣd+τ (Tm)

(ˆ
Tm

∣∣NT∇θϕ
∣∣2)1/2

.

Here Ḣd+τ (Tm) denotes the homogeneous Sobolev norm.

Proof. Without loss of generality, we assume that ϕ = 0. By expansion of ϕ in
Fourier series and use of Parseval-Plancherel identity, we have

ˆ
Tm
|ϕ(θ)|2dθ =

∑
k 6=0

|ϕ̂(k)|2 =
d∑

β=1

∑
k 6=0

1∣∣(NTk)β
∣∣ |ϕ̂(k)|

∣∣(NTk)β
∣∣ |ϕ̂(k)|

≤ C
d∑

β=1

∑
k 6=0

|k|d+τ |ϕ̂(k)|
∣∣(NTk)β

∣∣ |ϕ̂(k)|

≤ C
d∑

β=1

(∑
k 6=0

|k|2(d+τ) |ϕ̂(k)|2
)1/2(∑

k 6=0

∣∣(NTk)β
∣∣2 |ϕ̂(k)|2

)1/2

≤ C

(∑
k 6=0

|k|2(d+τ) |ϕ̂(k)|2
)1/2 d∑

β=1

(∑
k 6=0

∣∣(NTk)β
∣∣2 |ϕ̂(k)|2

)1/2

≤ C‖ϕ‖Ḣd+τ (Tm)

(ˆ
Tm

∣∣NT∇θϕ
∣∣2)1/2

.

Hence the lemma.

Conclusion

Let l be an integer larger than d+ τ . Then(ˆ
Tm

∥∥NT∇θ∇lXα
∥∥2)1/2

(1.8)

is controlled thanks to Proposition 1. Now, since for all 0 ≤ s ≤ bl − d− τc,

ˆ
Tm

∣∣NT∇θ∇lXα
∣∣2 =

d∑
β=1

∑
k 6=0

|k|2l
∣∣(NTk)β

∣∣2 ∣∣∣X̂α(k)
∣∣∣2

≥ C
∑
k 6=0

|k|2(l−d−τ)
∣∣∣X̂α(k)

∣∣∣2
≥ C

∥∥Xα −Xα
∥∥
Hbl−d−τc(Tm)

= ‖Xα‖Hbl−d−τc(Tm) .

(1.9)

Here bl − d − τc is the integer part of l − d − τ and Hbl−d−τc(Tm) denotes the
inhomogeneous (full) Sobolev norm.
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Existence under the diophantine assumption

Let us consider the following viscous regularization of (1.5):

−NT∇θ ·B(θ)NT∇θX
α
κ − κ∆Xα

κ = NT∇θ ·B·α, θ ∈ Tm and −
ˆ
Tm
Xα
κ = 0.

(1.10)
Standard methods (Lax Milgram) enable to prove the existence of a unique solution
Xα ∈ C∞(Tm) to (1.10) satisfying in addition the a priori bounds uniform in κ of
Proposition 1. It follows from the diophantine condition (1.7) and from (1.9) that
for all nonnegative integer s,

Xα
κ is bounded uniformly in κ in Hs(Tm).

Existence is thus easy. Uniqueness follows from the Poincaré inequality for the
degenerate gradient of Lemma 2. Therefore, we have proved the following theorem.

Theorem 3. Let 1 ≤ α ≤ d. Assume that B ∈ C∞(Tm), that B is elliptic and
periodic, and that the small divisors assumption (1.7) holds. Then, there exist a
unique solution Xα ∈ C∞(Tm) to the problem (1.5).

Corollary 4. Let 1 ≤ α ≤ d. Assume that A ∈ C∞(Rd), that A is elliptic and
quasiperiodic, and that the small divisors assumption (1.7) holds. Then, there exists
a unique quasiperiodic (so bounded) corrector χα ∈ C∞(Rd) solving (1.4).

Remark 1 (Loss of derivatives). What happens if A is not infinitely differentiable?
Assume A is quasiperiodic, A(·) = B(N ·) and N satisfies the diophantine condi-
tion (1.7). Let l be a integer such that l > d + τ , τ being given by (1.7). Assume
that B ∈ Cl(Tm). Then, Xα satisfies the bounds of Proposition 1 for any γ ∈ Nm,
|γ| ≤ l. Now, by (1.9) we know that the inhomogeneous Sobolev norm Hbl−d−τc(Tm)
of Xα is controlled. Therefore, one can prove the existence and uniqueness of Xα

in Hbl−d−τc(Tm). If

l >
m

2
+ d+ dτe+ 2, Hbl−d−τc(Tm) ↪→ C2(Tm),

so that we also get a quasiperiodic solution χα ∈ C2(Rd) to the cell problem (1.4).

2 Boundary layer correctors in homogenization
In this part of the lecture, we investigate the existence of boundary layer correctors:{

−∇ · A(y)∇v = 0, y · n > 0,
v = v0, y · n = 0,

(2.1)

where n ∈ Sd−1 and A = A(y) as well as v0 = v0(y) are Zd-periodic. These correctors
come from the study of the asymptotics (blow-up near a boundary point) of systems
with highly oscillating coefficients and boundary data, typically{

−∇ · A(x/ε)∇uεbl = 0, x ∈ Ω,
uεbl = −χ(x/ε) · ∇u0(x), x ∈ ∂Ω.
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Contrary to interior correctors which solve an equation posed in Rd, the boundary
layer correctors equations are posed in a half-space.

The analysis of (2.1) is contingent on whether the normal n ∈ Sd−1:
(1) has rational coordinates n ∈ RZd,

(2) or is irrational n /∈ RZd.
In the first case, one is typically led to study the system (see [AA99]){

−∇ · A(y)∇v = 0, (y′, yd) ∈ Td−1 × (0,∞),
v = v0(y

′, 0), y′ ∈ Td−1, (2.2)

where v(·, yd) is Zd−1-periodic. In the second case, the boundary y · n = 0 breaks
the periodic structure. Therefore, one is led to study a corrector problem with a
quasiperiodic structure in the tangential variable. One has to analyze the following
degenerate elliptic problem in the half-space (see [GVM11]) −

(
NT∇θ

∂t

)
·B(θ, t)

(
NT∇θ

∂t

)
V = 0, t > 0,

V = V0(θ), t = 0,
(2.3)

with N ∈ Md,d−1(R). Two questions are relevant regarding these systems: (i) well-
posedness, (ii) asymptotic behavior away from the boundary.

Theorem 5. There exists a unique solution v to (2.2) such thatˆ ∞
0

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd ≤ C‖v0‖2H1/2(Td−1),

with C = C(d, λ). Moreover, if A is in addition C0,µ(Td), with µ > 0, then there
exists κ = κ(d, λ) such thatˆ ∞

T

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd ≤ C‖v0‖2H1/2(Td−1) exp(−κT ),

with C = C(d, λ).

Theorem 6. Assume that B ∈ C∞(Td−1 × (0,∞)) and V0 ∈ C∞(Td). Then there
exists a unique solution V to (2.3) such that for all multi-index γ ∈ Nd, for all l ≥ 0,ˆ

Td

ˆ ∞
0

∣∣NT∇θ∂
γ
θV
∣∣2 +

∣∣∂l+1
t V

∣∣2 dtdθ ≤ C‖V0‖2C|γ|+1 , (2.4)

where C = C (λ, d, ‖B‖C|γ|+l). Moreover, if the diophantine condition (1.7) holds for
N ∈ Md,d−1(R), then for all multi-index γ ∈ Nd, for all l ≥ 0, for all 1 < κ < ∞,
there exists C = C(λ, d, τ, p, B, V0) such thatˆ

Td

ˆ ∞
T

∣∣NT∇θ∂
γ
θV
∣∣2 +

∣∣∂l+1
t V

∣∣2 dtdθ ≤ CT−κ.

Remark 2. As for the existence of bounded correctors in homogenization, the use
of the small divisors assumption to get the asymptotic behavior of V is responsible
for a loss of derivatives, which prompts the need for more regularity on A; to make
things simple, we take B ∈ C∞(Td−1 × (0,∞)). Notice however that the loss of
derivatives takes place in the tangential direction, so that it would be enough to
only assume smoothness of B in θ.
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Proof of Theorem 5

For the existence, we first lift the boundary data. Existence to the problem with ho-
mogeneous Dirichlet data and source term compactly supported in yd in the Hilbert
space

H1
0 (Td−1 × (0,∞)) endowed with the norm

ˆ ∞
0

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd,

then follows from the Lax-Milgram lemma.
We now go into more details for the asymptotic behavior of v away from the

boundary. The idea is to get a Saint-Venant estimate (also called Phragmen-
Lindelöf) estimate on

F (T ) :=

ˆ ∞
T

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd.

In other words, what we aim for is a differential inequality on F (T ). To be able to
differentiate F , we need to assume some smoothness of v away from the boundary.
Assuming A ∈ C0,µ(Td) yields that v is (at least) of class C1,µ′ , 0 < µ′ < µ in the
interior of the domain (not necessarily up to the boundary). Let T > 0 be fixed.
Consider

w(y′, yd) := v(y′, yd)−
ˆ
Td−1

v(y′, T )dy′,

which is a weak solution to

−∇ · A(y)∇w = 0 in Td−1 × (0,∞).

Thus, testing against w and integrating by parts on Td−1 × (T,∞) one infers

λ

ˆ ∞
T

ˆ
Td−1

|∇w|2dy′dyd ≤ −
ˆ
Td−1

∇w(y′, T ) · edw(y′, T )dy′

≤
(ˆ

Td−1

|∇w(y′, T )|2dy′
)1/2(ˆ

Td−1

|w(y′, T )|2dy′
)1/2

.

By the Poincaré-Wirtinger inequality on Td−1, we getˆ
Td−1

|w(y′, T )|2dy′ ≤ C

ˆ
Td−1

|∇y′w(y′, T )|2dy′ ≤
ˆ
Td−1

|∇yw(y′, T )|2dy′.

Since
F ′(T ) = −

ˆ
Td−1

|∇w(y′, T )|2dy′,

we have
F (T ) ≤ C(−F ′(T ))1/2(−F ′(T ))1/2 = −CF ′(T ),

which impliesˆ ∞
T

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd ≤ C exp(−κT )

ˆ ∞
0

ˆ
Td−1

|∇v(y′, yd)|2dy′dyd,

hence the result. Notice that the constant C does not depend on the C0,µ semi-norm
of A.
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Proof of Theorem 6

Existence basically comes from the following lemma (see [GVM11, Lemma 3]). Let
us notice that the small divisors condition is not needed.

Lemma 7. Let Y = Y (θ, t) be a smooth weak solution to −
(
NT∇θ

∂t

)
·B(θ, t)

(
NT∇θ

∂t

)
Y = H +

(
NT∇θ

∂t

)
·G, t > 0,

V = 0, t = 0,
(2.5)

with tH, G ∈ L2(Td × R+). Then
ˆ
Td

ˆ ∞
0

∣∣NT∇θY
∣∣2 + |∂tY |2 dtdθ ≤ C

ˆ
Td

ˆ ∞
0

|tH|2 + |G|2 dtdθ.

Proof. The key ingredient is the one-dimensional Hardy inequality (see [Gal11, In-
equality II.4.14]) applied in the vertical direction. It takes advantage of the fact
that Y (·, 0) = 0. Somehow, Hardy’s inequality is a good alternative to Poincaré’s
inequality, since the constant does not depend on the size of the domain: for all
θ ∈ Td, ˆ ∞

0

∣∣∣∣Y (θ, t)

t

∣∣∣∣2 dt ≤ C

ˆ ∞
0

|∂tY |2 dt.

Testing (2.5) against Y and integrating by parts yields

λ

ˆ
Td

ˆ ∞
0

∣∣NT∇θY
∣∣2 + |∂tY |2 dtdθ

≤
ˆ
Td

ˆ ∞
0

tH
Y

t
dtdθ −

ˆ
Td

ˆ ∞
0

G ·
(
NT∇θ

∂t

)
Y dtdθ

≤ C

(ˆ
Td

ˆ ∞
0

|tH|2dtdθ
)1/2(ˆ

Td

ˆ ∞
0

|∂tY |2dtdθ
)1/2

+

(ˆ
Td

ˆ ∞
0

|G|dtdθ
)1/2(ˆ

Td

ˆ ∞
0

∣∣NT∇θY
∣∣2 + |∂tY |2 dtdθ

)1/2

,

hence the result.

The study of the asymptotic behavior relies on the following Poincaré inequality,
which is an improvement on Lemma 2.

Lemma 8. For all 1 < p < ∞, there exists a constant C > 0 such that for any
ϕ = ϕ(θ), ϕ ∈ Hd+τ (Td),

ˆ
Td
|ϕ− ϕ|2 ≤ C‖ϕ‖2−2/p

Ḣ
d+τ
p−1 (Td)

(ˆ
Td

∣∣NT∇θϕ
∣∣2)1/p

.

Here Ḣ
d+τ
p−1 (Td) denotes the homogeneous Sobolev norm.
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Proof. This generalization is just due to another choice of exponents in Hölder’s
inequality. Without loss of generality, we assume that ϕ = 0. By expansion of
ϕ in Fourier series and use of Parseval-Plancherel identity, we have for α := 1/p,
1/p′ := 1− 1/p,

ˆ
Td
|ϕ(θ)|2dθ =

∑
k 6=0

|ϕ̂(k)|2 =
d∑

β=1

∑
k 6=0

1∣∣(NTk)β
∣∣2α |ϕ̂(k)|2(1−α)

∣∣(NTk)β
∣∣2α |ϕ̂(k)|2α

≤ C

d∑
β=1

∑
k 6=0

|k|2α(d+τ) |ϕ̂(k)|2(1−α)
∣∣(NTk)β

∣∣2α |ϕ̂(k)|2α

≤ C

d∑
β=1

(∑
k 6=0

|k|
2(d+τ)
p−1 |ϕ̂(k)|2

)1−1/p(∑
k 6=0

∣∣(NTk)β
∣∣2 |ϕ̂(k)|2

)1/p

≤ C

(∑
k 6=0

|k|
2(d+τ)
p−1 |ϕ̂(k)|2

)1−1/p d∑
β=1

(∑
k 6=0

∣∣(NTk)β
∣∣2 |ϕ̂(k)|2

)1/p

≤ C‖ϕ‖2−2/p)
Ḣ
d+τ
p−1 (Td)

(ˆ
Td

∣∣NT∇θϕ
∣∣2)1/p

.

Hence the lemma.

Let T > 0 and 1 < p <∞ be fixed. Consider

W (θ, t) := V (θ, t)−
ˆ
Td
V (θ, T )dθ,

which is a smooth weak solution to

−
(
NT∇θ

∂t

)
·B(θ, t)

(
NT∇θ

∂t

)
W = 0, t > 0.

Testing this equation against W and integrating between T and ∞ we get

λ

ˆ
Td

ˆ ∞
T

∣∣NT∇θW
∣∣2 + |∂tW |2 dtdθ

≤ −
ˆ
Td

(
−NT∇θ

∂t

)
W (θ, T ) · ed+1W (θ, T )dθ

≤
(ˆ

Td

∣∣NT∇θW (θ, T )
∣∣2 + |∂tW (θ, T )|2 dθ

)1/2(ˆ
Td
|W (θ, T )|2

)1/2

≤ (−F ′(T ))1/2
(ˆ

Td
|W (θ, T )|2

)1/2

.

Now by the Poincaré inequality of Lemma 8, we have(ˆ
Td
|W (θ, T )|2

)1/2

≤ C‖W (θ, T )‖1−1/p
Ḣ
d+τ
p−1 (Td)

(ˆ
Td

∣∣NT∇θW (θ, T )
∣∣2)1/(2p)

≤ C(−F ′(T ))1/(2p),
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with C = C(λ, d, τ, p, B, V0). We have used the bounds on the higher-order deriva-
tives (2.4) to bound the Ḣ

d+τ
p−1 (Td) norm of W (·, T ). Eventually,

F (T ) ≤ C(−F ′(T ))
p+1
2p ,

so that
F (T ) ≤ CT

p+1
1−p .

As p ranges between 1 and ∞, the power p+1
1−p takes all the values between −1 and

−∞. Therefore, ˆ
Td

ˆ ∞
T

∣∣NT∇θ∂
γ
θV
∣∣2 +

∣∣∂l+1
t V

∣∣2 dtdθ
decays faster than any power of T when T →∞.
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