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1 Review of the periodic case
Let us shed a new light on the homogenization of periodic microstructures thanks
to the div-curl lemma. We use the notations introduced in the first lecture. For
1 ≤ α ≤ d,

ξε := A(x/ε)∇uε,
vεα := xα + εχ∗,α(x/ε),

γ∗,εα := ∇vεα = eα +∇yχ
∗,α(x/ε),

η∗,εα := A∗(x/ε)∇vεα = A∗(x/ε)γ∗,εα = A∗(x/ε)(eα +∇yχ
∗,α(x/ε)).

We have for all x ∈ Ω,

ξε · γ∗,εα = A(x/ε)∇uε · ∇vεα = ∇uε · A∗(x/ε)∇vεα = ∇uε · η∗,εα = η∗,εα · ∇uε. (1.1)

Notice that,

∇uε, ξε, γ∗,εα and η∗,εα are bounded uniformly in L2(Ω).

Moreover,

div(ξε) = f, curl(γ∗,εα ) = 0, div(η∗,εα ) = 0 and curl(∇uε) = 0.

Therefore, by the div-curl lemma, we can pass to the limit in (2.9) and get

ξ0 (eα + χ∗,α) = A∗(y)(eα +∇yχ∗,α)∇u0,

that is after simplification

ξ0,α =
(
A∗γα + A∗γβ∂yβχ

∗,α
)
∂xγu

0.

To put it in a nutshell, we recover the expression for the homogenized matrix given
in the first lecture.
Remark 1. In this proof, we only use the weak convergence of ∇uε, ξε, γ∗,εα and η∗,εα .
Thus resorting to the div-curl lemma enables to bypass in particular the use of the
strong convergence of vε. As far as homogenization is concerned, we do not need
bounded correctors.
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2 Stochastic homogenization

In this section we will free ourselves from the periodic setting. The abstract frame-
work of stochastic homogenization will cover as a particular case homogenization of
periodic and quasiperiodic structures.

As an insight into what follows, let us say that we consider the homogenization
of

−∇ · A(x/ε, ω)∇uε(·, ω) = f, x ∈ Ω,

with ω ∈ Σ and (Σ,F , µ) a probability space. Picking an ω amounts at choosing
some structure A(·, ω). The results we aim for are of the following type: there
exists a constant matrix A0 (independent of the realization) so that for almost every
ω ∈ Σ, uε(·, ω) converges to a solution u0 of

−∇ · A0∇u0 = f, x ∈ Ω.

More precisely, we will assume that the d-dimensional random process A is of the
following form (with a slight abuse of notation)

A(y, ω) = A(T (y)ω)

where A = A(ω) is a random variable on Σ and T = (T (y))y∈Rd is an ergodic
dynamical system acting on Σ. Our homogenization problem can be rewritten as

−∇ · A(T (x/ε)ω)∇uε(x, ω) = f, x ∈ Ω.

This generalization comes at two expenses:

(1) We get a homogenization theorem for almost every realization (not for all real-
izations as in the periodic setting developed in the first lecture). In particular,
it is not possible to know given a specific realization if the convergence holds
or not.

(2) We lose the existence of bounded correctors χ. The correctors χ still exist,
but only properties of their gradient will be used.

There are two main interests in introducing the framework of stochastic homog-
enization in this lecture:

(1) It enables to highlight the key properties needed for homogenization to hold.

(2) By introducing a dynamical system point of view, it unifies the presentation
of homogenization and emphasizes the role of the underlying dynamics in the
homogenization process.

The last point is particularly relevant in the perspective of constructing interior and
boundary layer correctors.

The main source of inspiration for this lecture is Chapter 7 of Jikov, Kozlov and
Olĕınik’s book [JKO94].
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The setting

Let (Σ,F , µ) be a probability space. Let T = (T (y))y∈Rd , be a family of random
variables (a random process), acting on Σ: for all y ∈ Rd, T (y) is a random variable
on Σ

T (y) : ω ∈ Σ 7−→ T (y)ω ∈ Σ.

Actually, (T (y))y∈Rd is a dynamical system acting on the probability space Σ with,
in addition, the following properties:

Group property T (0) = id : Σ −→ Σ and

T (y + ỹ) = T (y)T (ỹ) for all y, ỹ ∈ Rd. (2.1)

Measure preserving T (y) : Σ→ Σ is measure preserving i.e.

∀F ∈ F , ∀y ∈ Rd, µ(T (y)F ) = µ(F ). (2.2)

In other terms, the image measure µT is equal to µ.

Measurability For all measurable (random variable) f on Σ (with values in Rm),

(y, ω) ∈ Rd × Σ 7−→ f(T (y)ω)

is measurable.

Let Lp(Σ;Rm), 1 ≤ p < ∞ be the space of measurable µ integrable functions
on Σ with exponent p, quotiented by equality almost everywhere; let L∞(Ω;Rm)
be the space of measurable essentially bounded functions. With the terminology of
probabilities, the elements of Lp(Σ) and L∞(Σ) are random variables.

Let ζ = (ζ(y, ·))y∈Rd be a family of random variables on Σ with values in Rm (a
d-dimensional random process):

(y, ω) ∈ Rd × Σ 7−→ ζ(y, ω) ∈ Rm.

We say that ζ is stationary if for any integer k, for any y(1), . . . y(k) ∈ Rd, for any
h ∈ Rd, the distribution (law) of the random vector

ω ∈ Σ 7−→
(
ζ(y(1) + h, ω), ζ(y(2) + h, ω), . . . ζ(y(k) + h, ω)

)
∈ Rmk

is independent of h.
Here we will work with random processes of the form:

there exists Z : Σ→ Rm such that for all y ∈ Rd, ω ∈ Σ, ζ(y, ω) = Z(T (y)ω).
(2.3)

Random processes of the form (2.3) are stationary. This follows from the group
property (2.1) and the measure preservation (2.2). Let k be a fixed integer and
y(1), . . . y(k) ∈ Rd. For (F (1), . . . F (k)) ∈ ⊗ki=1F , for h ∈ Rd,

µ⊗ µ⊗ . . . µ
{
ζ(y(1) + h, ω(1)) ∈ F (1), . . . ζ(y(k) + h, ω(k)) ∈ F (k)

}
= µ

(
Z(T (y(1) + h)ω(1)) ∈ F (1)

)
. . . µ

(
Z(T (y(k) + h)ω(k)) ∈ F (k)

)
= µ

(
Z(T (y(1))T (h)ω(1)) ∈ F (1)

)
. . . µ

(
Z(T (y(k))T (h)ω(k)) ∈ F (k)

)
= µ

(
Z(T (y(1))ω(1)) ∈ F (1)

)
. . . µ

(
Z(T (y(k))ω(k)) ∈ F (k)

)
= µ⊗ µ⊗ . . . µ

{
ζ(y(1), ω(1)) ∈ F (1), . . . ζ(y(k), ω(k)) ∈ F (k)

}
.
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A measurable function f on Σ is invariant if

f(T (y)ω) = f(ω) and almost surely in ω, for all y ∈ Rd.

The dynamical system T = (T (y))y∈Rd is called ergodic if any invariant random
variable f is constant almost surely.

Examples

Periodic setting Let Σ = Td, F be its Borel σ-algebra and µ the Lebesgue
measure on Td. Let T = T (y)y∈Rd be the dynamical system defined by for all
y ∈ Rd,

T (y) : ω ∈ Td 7−→ ω + y ∈ Td.

The Lebesgue measure being invariant under translation, so is µ under T . And for
an f = f(ω) defined on Σ = Td, f invariant under T i.e. for almost every ω ∈ Σ,
for all y ∈ Rd,

f(T (y)ω) = f(ω + y) = f(ω),

implies that f is constant. Therefore, T is ergodic.

Quasiperiodic setting Let m be an interger, m ≥ d. Let Σ = Tm, F be its Borel
σ-algebra and let µ denote the Lebesgue measure on Tm. Let N ∈ Mmd(R) be a
matrix withm rows and d columns. We consider the dynamical system T = T (y)y∈Rd
defined by for all y ∈ Rd,

T (y) : ω ∈ Tm 7−→ ω +Ny ∈ Tm.

The Lebesgue measure being invariant under translation, so is µ under T .
At what condition is T ergodic? It depends on how the orbits y 7→ T (y)ω fill

the torus Tm. Let f = f(ω) defined on Σ = Tm, f invariant under T i.e. for almost
every ω ∈ Σ, for all y ∈ Rd,

f(T (y)ω) = f(ω +Ny) = f(ω). (2.4)

Fix ω such that (2.4). There are two situations:

(1) either there is k ∈ Zm, k 6= 0, and there exists 1 ≤ α ≤ d so that

(NTk)α =
m∑
β=1

Nβαkβ = 0;

in that case the orbit y 7→ T (y)ω is not dense in Tm and T is not ergodic;

(2) or for all k ∈ Zm, k 6= 0, for all 1 ≤ α ≤ d,

(NTk)α =
m∑
β=1

Nβαkβ 6= 0;

in that case, the orbit y 7→ T (y)ω is dense in Tm and thus T is ergodic.
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Random checkerboard For k ∈ Z2, let Σ(k) := {−1, 1}, F(k) the power set of
Σ(k) and µ(k) := pδ−1 + (1− p)δ1 a probability measure. Let

Σ =
∏
k∈Z2

Σ(k),

and F the σ-algebra on Σ generated by the products

F =
∏
k∈Z2

F(k), (2.5)

F(k) = {−1, 1} but a finite number F(k) ∈ F(k). Then using Kolmogorov’s extension
theorem [Bil95, Section 36] and [Øks98, Theorem 2.1.5], one can define a unique
probability measure µ on Σ such that

µ(F ) =
∏
k∈Z2

µ(k)

(
F(k)

)
for all F of the type (2.5).

We now consider the dynamical system T = (T (y))y∈Zd defined by for all ω ∈ Σ,
for all k ∈ Z2,

(T (y)ω)k := ωk+y,

which is nothing but the shifting by y. Since all the measures µ(k) are identical, µ
is invariant under T . With some more work, it can be showed that T is ergodic (see
[Bil78, Chapter 1]).

Notice that in this setting the dynamical system T is defined on Zd × Σ rather
than Rd × Σ. However, it is possible to make a slightly more involved construction
of the underlying probability space and of T , so that T is a random process defined
on Rd × Σ.

In the probability space

Hilbert spaces and Weyl’s decomposition in the probability space

A function f ∈ L2
loc(Rd;Rd) is potential (or curl-free, vortex-free), if curl(f) = 0 in

the sense of distributions, i.e. for all ϕ ∈ C∞c (Rd),
ˆ
Rd

(
fα∂xβϕ− fβ∂xαϕ

)
= 0.

A function f ∈ L2
loc(Rd;Rd) is solenoidal (or incompressible), if div(f) = 0 in the

sense of distributions, i.e. for all ϕ ∈ C∞c (Rd),
ˆ
Rd
fα∂xαϕ = 0.

Using the action of the dynamical system T on Σ, we transpose these notions to
functions f ∈ L2(Σ). We say that f ∈ L2(Σ) is potential (resp. solenoidal) if for
almost every ω ∈ Σ, f(T (·)ω) ∈ L2

loc(Rd) is potential (resp. solenoidal).
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We define subspaces of the Hilbert space L2(Σ). Let

L2
pot(Σ) :=

{
f ∈ L2(Σ) : f is potential

}
,

L2
sol(Σ) :=

{
f ∈ L2(Σ) : f is solenoidal

}
,

L2
pot,0(Σ) :=

{
f ∈ L2(Σ) : f is potential and E(f) = 0

}
,

L2
sol,0(Σ) :=

{
f ∈ L2(Σ) : f is solenoidal and E(f) = 0

}
.

Since
f ∈ L2(Σ) 7−→ E(f) = 0,

is continuous, L2
pot,0(Σ) (resp. L2

sol,0(Σ)) are closed subspaces of L2
pot(Σ) (resp.

L2
sol(Σ)). The fact that L2

pot(Σ) and L2
sol(Σ) are closed subspaces of L2(Σ) follows

from the following fact. Let fn ∈ L2(Σ) so that fn → f in L2(Σ). Then for almost
every ω ∈ Σ, fn(T (·)ω) converges to f(T (·)ω) in L2

loc(Rd).
With some more work (see [JKO94, Lemma 7.3]) one can prove that the space

L2(Σ) has a type of Helmholtz decomposition.

Theorem 1 (Weyl’s decomposition). The following orthogonal decomposition holds:

L2(Σ) = L2
pot,0(Σ)⊕ L2

sol(Σ).

Correctors

Let 1 ≤ α ≤ d. We consider the following corrector problem posed on the probability
space Σ:

find γ∗α ∈ L2
pot(Σ), such that A∗γ∗α ∈ L2

sol(Σ) and E(γ∗α) = eα, (2.6)

with eα the α-th vector of the canonical basis of Rd. Let us stress that we look for
a vector field γ∗α = γ∗α(ω) ∈ Rd defined on Σ.

By Weyl’s decomposition of the probability space (Theorem 1), we can reformu-
late the corrector problem (2.6) as:

find Γ∗α ∈ L2
pot,0(Σ), such that for all ϕ ∈ L2

pot,0(Σ), E {ϕ · A∗(eα + Γ∗α)} = 0.
(2.7)

Notice that E(Γ∗α) = 0 and that γ∗α(ω) = eα + Γ∗α(ω).
The variational formulation (2.7) is clearly suitable for the Lax-Milgram theorem.

Since L2
pot,0(Σ) is closed in the Hilbert space L2(Σ), and the bilinear form

(ϕ, ψ) ∈ L2(Σ) 7−→ E {ϕ · A∗ψ} ,

is coercive, there exists a unique solution Γ∗α ∈ L2
pot,0 to (2.7).

Back to physical space

Spatial averages and expectations: the ergodic theorem

Ergodicity is fundamental in order to make a connection between spatial averages of
random stationary fields, and expectations. For instance, the limit of A(x/ε, ω) =
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A(T (x/ε)ω) for a fixed realization ω ∈ Σ is a spatial average. How does this limit
relate to E(A) =

´
Σ
A(ω)dµ(ω)?

Let T be a dynamical system as defined above: with the group and measurability
properties, and measure preserving. Let 1 ≤ p <∞. Let f ∈ Lploc(Rd). We say that
f has a mean value, if there exists f such that

f(x/ε)
ε→0
⇀ f weakly in Lploc(R

d).

Theorem 2 (Birkhoff Ergodic Theorem, see [JKO94, Theorem 7.2]). Let 1 ≤ p <
∞. Let f ∈ Lp(Σ). Then:

(1) For almost every ω ∈ Σ, f(T (·)ω) ∈ Lploc(Rd) has a mean value, denoted by
f(T (·)ω).

(2) The mean value considered as a function of ω,

ω ∈ Σ 7−→ f(T (·)ω),

is invariant and ˆ
Σ

f(ω)dµ(ω) =

ˆ
Σ

f(T (·)ω)dµ(ω).

(3) Moreover, if T is ergodic, then for all ω ∈ Σ,

f(T (·)ω) =

ˆ
Σ

f(ω)dµ(ω) = E(f).

It follows that in the case when T is ergodic, the mean value of any realization
f(T (·)ω) is constant independent of ω and equal to the expectation. In other words,
the spatial mean value equals the expectation, i.e. mean value over Σ.

Homogenization

In this part we assume that T is an ergodic dynamical system. We consider the
homogenization of{

−∇ · A(T (x/ε)ω)∇uε(x, ω) = f, x ∈ Ω,
uε(x, ω) = 0, x ∈ ∂Ω,

where Ω is a bounded domain of Rd. We have the classical a priori bounds uniformly
in ω. There exists C = C(d,Ω, λ) > 0, for all ω ∈ Σ,(ˆ

Ω

‖∇uε(x, ω)‖2dx

)1/2

≤ C‖f‖L2(Ω).

Therefore, the Poincaré inequality implies that uε(x, ω) is bounded in H1
0 (Ω) uni-

formly in ε and ω ∈ Σ. For all ω ∈ Σ (up to extracting subsequences),

uε(x, ω)→ u0(x, ω) strongly in L2(Ω),

∇uε(x, ω) ⇀ ∇u0(x, ω) weakly in L2(Ω),

ξε(x, ω) := A(T (x/ε)ω)∇uε(x, ω) ⇀ ∇ξ0(x, ω) weakly in L2(Ω).
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Question. Do we have ξ0(x, ω) = A0∇u0(x, ω) for some constant matrix A0 and, in
particular, is u0 independent of the realization?

Let γ∗α ∈ L2
pot(Σ) be the unique solution to the corrector problem (2.6). We

define the following stationary fields

γ∗,εα (x) := γ∗α(T (x/ε)ω),

η∗,εα (x) := A∗(T (x/ε)ω)γ∗α(T (x/ε)ω).

By the ergodic theorem, we have for almost every ω ∈ Σ,

γ∗,εα (x) ⇀ γ∗α(T (·)ω) = E(γ∗α) = eα weakly in L2
loc(Rd),

η∗,εα (x) ⇀ A∗(T (·)ω)γ∗α(T (·)ω) = E(A∗γ∗α) weakly in L2
loc(Rd).

Remark 2. Notice that neither uε(x, ω), ∇uε(x, ω), nor ξε(x, ω), are stationary.

Now, for all ω ∈ Σ, for all x ∈ Ω,

ξε(x, ω) · γ∗,εα = ∇uε(x, ω) · η∗,εα . (2.8)

Notice that for all ω ∈ Σ,

div(ξε(·, ω)) = f, curl(∇uε(·, ω)) = 0,

and for almost all ω ∈ Σ,

div(η∗,εα ) = div(η∗α(T (·)ω) = 0, curl(γ∗,εα ) = curl(γ∗α(T (·)ω) = 0.

Therefore, for almost every ω (fixed), we can apply the div-curl lemma to pass to
the limit in (2.9). We get

ξ0(x, ω) · eα = ∇u0(x, ω) · E(A∗γ∗α). (2.9)

After simplification

ξ0,α(x, ω) =
(
E(A∗γα) + E(A∗γβ {Γ∗α}β)

)
∂xγu

0(x, ω).

Finally
A0 := E(A) + E(AΓ),

Γ = (Γα)1≤α≤d being the unique solution to the corrector problem (2.6) with A∗

replaced by A. Consequently, u0 = u0(x) is the unique solution to the deterministic
problem {

−∇ · A0∇u0 = f, x ∈ Ω,
u0 = 0, x ∈ ∂Ω.
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