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One of the essential difficulties of non linear (and even linear!) PDEs is the
incompatibility of weak convergence with products. For instance in the first lecture
we proved that

A(x/ε)∇uε ⇀ A0∇u0 weakly in L2(Ω)

where A0 = A+ A∇χ is in general different from the weak limit A of A(x/ε).
This lecture is devoted to situations where additional information (notably on

the boundedness of some linear combination of derivatives) enables to prove that
the weak limit of the product is the product of the weak limits. A simple instance of
such a phenomenon is the following. Let Ω be as usual a bounded Lipschitz domain
of Rd. Let vn = vn(x) ∈ Rd and wn = wn(x) ∈ Rd be two sequences such that

vn is bounded in H1(Ω), vn ⇀ v weakly in L2(Ω),

wn is bounded in L2(Ω), wn ⇀ w weakly in L2(Ω).

Then, by Rellich’s compact injection theorem a subsequence of vn converges strongly
to v in L2(Ω). Therefore

vn · wn ⇀ v · w weakly in L1(Ω),

(the whole sequence converges). One encounters this situation when passing to the
limit in the non linear term un ·∇un of the Navier-Stokes equations, for un a sequence
of smooth approximations.

The core of this lecture is the div-curl lemma. The lecture is mainly based on
the paper by Murat [Mur78] and the Chapter 5.B of the book by Evans [Eva90].

1 The div-curl lemma
Let us start with the definition of the divergence div and the rotational curl. For
v ∈ D′(Ω), v = v(x) ∈ Rd, we define div v = div v(x) ∈ R by

div v := ∂xαvα in D′(Ω).

For w ∈ D′(Ω), w = w(x) ∈ Rd, we define curlw = curlw(x) ∈ Rd2 by

{curlw}αβ := ∂xβw
α − ∂xαwβ in D′(Ω),

for 1 ≤ α, β ≤ d.
∗Université de Bordeaux, 351 cours de la Libération, 33405 Talence. E-mail address:

christophe.prange@math.cnrs.fr

1



Weak and strong convergence for PDEs Lecture 3

Theorem 1 (Div-curl lemma). Let 1 < p < ∞ and p′ the Hölder conjugate of p,
i.e. 1

p
+ 1

p′
= 1. Let

vn = vn(x) ∈ Rd be a sequence in Lp(Ω) such that div vn ∈ Lp(Ω),

wn = wn(x) ∈ Rd be a sequence in Lp
′
(Ω) such that curlwn ∈ Lp

′
(Ω).

Assume that

‖vn‖Lp(Ω) + ‖ div vn‖Lp(Ω) is bounded uniformly and vn ⇀ v weakly in Lp(Ω),

‖wn‖Lp′ (Ω) + ‖ curlwn‖Lp′ (Ω) is bounded uniformly and wn ⇀ w weakly in Lp
′
(Ω).

Then,
vn · wn ⇀ v · w

in the sense of distributions.

In the div-curl lemma we only control some linear combinations of derivatives,
namely the divergence and the curl, whereas the example in the introduction based
on Rellich’s compactness theorem requires a control of all first-order derivatives of
vn (or wn). It is often applied to sequences such that div vn = 0 or curlwn = 0.

2 A direct proof via the Fourier transform: the case
p = p′ = 2

We give here a proof based on the original ideas of Murat [Mur78] using the Fourier
transform in L2(R) and the Parseval-Plancherel formula. The following proof is
direct, in the sense that it only relies on elementary arguments and computations.
In particular, we do not use Rellich’s compactness theorem. The proof is valid for
an arbitrary bounded domain Ω, i.e. without any assumption on ∂Ω. The strategy
of the proof (splitting between low and high frequencies) is inspired from the proof
of Rellich’s injection H1

0 (Ω) b L2(Ω) given in the Introduction.
Let ϕ ∈ C∞c (Ω) a test function. We need to show that

ˆ
Ω

vn · wnϕ −→
ˆ

Ω

v · wϕ.

Step 1: extension to Rd Before resorting to the Fourier transform, we need to
define functions on the whole space Rd. Let ψ ∈ C∞c (Ω) such that ψ ≡ 1 on Suppϕ.
Let

ṽn :=

{
ϕvn in Ω
0 on Rd \ Ω

and w̃n :=

{
ψwn in Ω
0 on Rd \ Ω

.

Denoting by ̂̃vn (resp. ̂̃wn) the Fourier transform of ṽn (resp. w̃n), we have
ˆ

Ω

vn · wnϕ =

ˆ
Rd
ṽn · w̃n =

ˆ
Rd
̂̃vn · ̂̃wn. (2.1)
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It is clear that ̂̃vn and ̂̃wn are bounded in L2(Rd),̂̃vn ⇀ ̂̃v weakly in L2(Rd),̂̃wn ⇀ ̂̃w weakly in L2(Rd),

ξα̂̃vn,α is bounded in L2(Rd),

ξβ ̂̃wn,α − ξα̂̃vn,β is bounded in L2(Rd).

The proof of the convergence of the last term in (2.1) is based on a splitting
between low and high frequencies: for R > 0

ˆ
Rd
̂̃vn · ̂̃wn =

ˆ
B(0,R)

̂̃vn · ̂̃wn +

ˆ
Rd\B(0,R)

̂̃vn · ̂̃wn.
Step 2: low frequencies To handle the low frequencies, we rely on Lebesgue’s
theorem of dominated convergence. On the one hand,

‖ ̂̃vn‖L∞(Rd) ≤ ‖ṽn‖L1(Ω) ≤ CΩ‖vn‖L2(Ω), (2.2)

and on the other hand, the weak convergence of ṽn in L2(Rd) implies the pointwise
convergence

̂̃vn(ξ) =

ˆ
Ω

vn(x) exp(−ix · ξ)dξ −→
ˆ

Ω

v(x) exp(−ix · ξ)dξ = v̂(ξ). (2.3)

The analogues of (2.2) and (2.3) also hold for w̃n. Therefore,
ˆ
B(0,R)

̂̃vn · ̂̃wn −→ ˆ
B(0,R)

̂̃v · ̂̃w,
when n→∞.

Step 3: high frequencies For the control of the high frequencies, we use the
boundedness of the divergence and the curl in L2(Ω). We simply have∣∣∣∣ˆ

Rd\B(0,R)

̂̃vn · ̂̃wn∣∣∣∣ =

∣∣∣∣ˆ
Rd\B(0,R)

ξβξβ
|ξ|2

̂̃vn · ̂̃wn∣∣∣∣ ≤ 1

R

ˆ
Rd\B(0,R)

∣∣∣∣ξβ ̂̃vn · ̂̃wn∣∣∣∣ .
It is subsequently enough to show that for all 1 ≤ β ≤ d, ξβ̂̃vn,α ̂̃wn,α is bounded in
L1(Rd) uniformly in n. This is the place where the assumptions on the divergence
and the curl are crucial.

Lemma 2. For any vectors V, W ∈ Cd, for any 1 ≤ β ≤ d,

ξβ

d∑
α=1

VαWα = Wβ

d∑
α=1

ξαVα +
d∑

α=1

{
ξβWα − ξαWβ

}
Vα.

EDMI Bordeaux 2016 3



Weak and strong convergence for PDEs Lecture 3

Applying this identity to V = ̂̃vn,α(ξ) and W = ̂̃wn,α(ξ), we get

ξβ̂̃vn,α ̂̃wn,α = ̂̃wn,β ξα̂̃vn,α︸ ︷︷ ︸
L2(Rd)

+

{
ξβ ̂̃wn,α − ξα ̂̃wn,β}︸ ︷︷ ︸

L2(Rd)

̂̃vn,α

so that ξβ̂̃vn,α ̂̃wn,α is bounded in L1(Rd) uniformly in n. Thus,
ˆ
Rd\B(0,R)

̂̃vn · ̂̃wn −→ 0,

when R→∞.
Finally, combining Step 1, Step 2 and Step 3 we get
ˆ

Ω

vn · wnϕ =

ˆ
Rd
̂̃vn · ̂̃wn n→∞−→

ˆ
Rd
̂̃v · ̂̃w =

ˆ
Rd
ṽ · w̃ =

ˆ
Ω

ṽ · w̃ =

ˆ
Ω

v · wϕ.

3 The case 1 < p, p′ <∞
To address the case p 6= 2, Fourier analysis is not suitable any longer and we need
to resort to tools from harmonic analysis, except in one case: when there exists a
sequence zn such that wn = ∇zn with

zn → z strongly in Lp
′
(Ω),

∇zn ⇀ ∇z weakly in Lp
′
(Ω).

(3.1)

Easy case

Let us assume (3.1). As we will see below, this is equivalent to curlwn = 0. Then
the div-curl lemma simply follows an integration by parts. Indeed, we have

ˆ
Ω

vn · wnϕ =

ˆ
Ω

vn · ∇znϕ = −
ˆ

Ω

∇ · vnznϕ−
ˆ

Ω

vn · ∇ϕzn

n→∞−→ −
ˆ

Ω

∇ · vzϕ−
ˆ

Ω

v · ∇ϕz =

ˆ
Ω

v · wϕ.

Remark 1. This computation was implicitly done in the first lecture, when proving
the homogenization via the oscillating test function (step (2)). Though there we did
not invoke the div-curl lemma, the same phenomenon is at work.

A few singular integrals

Let Γ = Γ(x) denote the fundamental solution of the Laplacian −∆:

Γ(x) :=

{ 1
2π

log |x|, d = 2,
cd

1
|x|d−2 , d ≥ 3.
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Then, for all f ∈ C∞0 (Rd), the Newtonian potential u given by

u(x) = Γ ? f(x) :=

ˆ
Rd

Γ(x− x̃)f(x̃)dx̃,

is a weak solution to
−∆u = f, x ∈ Rd. (3.2)

Our goal is to prove the following proposition.

Proposition 3.

(1) Let 1 < q < d. There exists C > 0 such that for all f ∈ Lq(Ω), the Newtonian
potential u = Γ ? f satisfies

‖∇u‖Lq∗ (Ω) ≤ C‖f‖Lq(Ω) with
1

q∗
=

1

q
− 1

d
.

(2) Let 1 < q <∞. There exists C > 0 such that for all f ∈ Lq(Ω), the Newtonian
potential u = Γ ? f satisfies

‖∇2u‖Lq(Ω) ≤ C‖f‖Lq(Ω).

The estimate for ∇u follows from an estimate on singular integrals of the follow-
ing type: for 0 < α < d and f ∈ C∞c (Rd), we define

Iαf(x) :=
1

| · |d−α
? f(x) =

ˆ
Rd

1

|x− x̃|d−α
f(x̃)dx̃.

Indeed,

∇Γ(x) =

{
1

2π
x
|x|2 , d = 2,

cd(2− d) x
|x|d , d ≥ 3.

Proposition 4. For all 0 < α < d, for all 1 < p < d/α, for all f ∈ Lp(Rd),

‖Iαf‖Lq(Rd) ≤ C‖f‖Lp(Rd) for 1/q = 1/p− α/d (3.3)

with C = C(α, d, p). We say that Iα is of (strong) type (p, q).

For a proof, see [Ste70, Theorem 1.1 p. 119] or [O’N63, section III] (more general
theorem on convolution in Lorentz spaces).
Remark 2 (homogeneity). The condition 1/q = 1/p− α/d comes from homogeneity
arguments. Let f ∈ Lp(Rd). Let 1 < p, q < ∞ and assume an estimate like (3.3)
holds, i.e. Iα is of type (p, q). For all δ > 0, we have

‖Iα{f(δ·)}‖Lq(Rd) ≤ C‖f(δ·)‖Lp(Rd).

Now, on the one hand

‖Iα{f(δ·)}‖Lq(Rd) =
1

δα
‖Iαf(δx)‖Lq(Rd) =

1

δα+d/q
‖Iαf‖Lq(Rd),

and on the other hand

‖f(δ·)‖Lp(Rd) =
1

δd/p
‖f‖Lp(Rd).

Therefore, α + d/q = d/p.
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It follows from the Proposition that for 1 < p < d, 1/p∗ = 1/p− 1/d,

‖∇u‖Lp∗ (Rd) ≤ C‖I1f‖Lp∗ (Rd) ≤ C‖f‖Lp(Rd). (3.4)

We now turn to the estimate of ∇2u. We have for all d ≥ 2, for all 1 ≤ α, β ≤ 1,

∂xα∂xβΓ(x) =

{
−d c̃d
|x|d

xαxβ
|x|2 , α 6= β,

c̃d
|x|d

{
1− d x2α

|x|2

}
, α = β,

with for d = 2, c̃2 := 1
2π

and for d = 3, c̃d := (2− d)cd.
Operators with a kernel of homogeneity −d such as 1

|·|d or ∂xα∂xβΓ(x) cannot
be handled using Proposition 4. Indeed, the kernel is neither integrable around 0,
nor at ∞. In some cases, subtle cancellations properties make it possible to define
an operator and prove its boundedness. One of the purposes of Calderon-Zygmund
theory is to address such situations.

Let ω = ω(s) be a Lipschitz function on Sd−1 such thatˆ
Sd−1

ω(s)dσ(s) = 0, (3.5)

and denote by K = K(x) the kernel

K(x) :=
1

|x|d
ω
( x
|x|

)
.

Notice that p. v. K ? f is well defined: for all f ∈ C∞c (Rd), for ε > 0,∣∣∣∣ˆ
B(x,ε)

1

|x− x̃|d
ω
( x− x̃
|x− x̃|

)
f(x̃)dx̃

∣∣∣∣ =

∣∣∣∣ˆ ε

0

ˆ
Sd−1

1

rd
ω(s)f(x− rs)rd−1dσ(s)dr

∣∣∣∣
=

∣∣∣∣∣∣
ˆ ε

0

1

r

ˆ
Sd−1

ω(s) [f(x− rs)− f(x)]︸ ︷︷ ︸
≤r

dσ(s)dr

∣∣∣∣∣∣ ≤
ˆ ε

0

dr

ˆ
Sd−1

|ω(s)|dσ(s)
ε→0−→ 0.

Proposition 5. The operator T , defined by for all f ∈ C∞0 (Rd) by

Tf(x) := p. v. K ? f(x),

is bounded from Lp(Rd) to Lp(Rd) for all 1 < p <∞.

Proposition 5 is actually a corollary of a general theory due to Calderon and
Zygmund. For a proof of Proposition 5, see [Ste70, theorem 3 p. 39].

For 1 ≤ α, β ≤ d, let

ωαβ(s) :=

{
sαsβ, α 6= β,

1− ds2
α, α = β,

for s ∈ Sd−1. If α 6= β, ωαβ is odd with respect to xα. If α = β, we have
ˆ
Sd−1

ωαβ(s)dσ(s) =

ˆ
Sd−1

dσ(s)− d
ˆ
Sd−1

s2
αdσ(s) =

ˆ
Sd−1

dσ(s)−
d∑

γ=1

ˆ
Sd−1

s2
γdσ(s)

=

ˆ
Sd−1

ds−
ˆ
Sd−1

d∑
γ=1

s2
γdσ(s) = 0.
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Since (3.5) is satisfied in both cases, Proposition 5 applies and implies that for
1 < p <∞,

‖∇2u‖Lp(Rd) ≤ C‖f‖Lp(Rd).

Remark 3. For u ∈ C∞c (Rd), for all 1 ≤ α ≤ d,

̂∂xα∂xβu(ξ) = −ξαξβû(ξ) = − ξα
|ξ|

ξβ
|ξ|
|ξ|2û(ξ) = R̂αR̂β−̂∆u(ξ),

where the Riesz transforms Rα are defined by: for f ∈ C∞c (Rd), for 1 ≤ α ≤ d,

Rαf(x) := ĉd p. v.

ˆ
Rd

xα − x̃α
|x− x̃|d+1

f(x̃)dx̃.

Therefore,
∂xα∂xβu = −RαRβ∆u,

and by the Lp boundedness of the Riesz potentials (see Proposition 5), for all 1 <
p <∞, there exists a constant C = C(d, p) such that∥∥∂xα∂xβu∥∥Lp(Rd)

≤ C ‖∆u‖Lp(Rd) .

Helmholtz’s decomposition and the proof of the div-curl lemma

The following proof of the div-curl lemma is inspired from Evans [Eva90, Chapter
5.B] and from [Mur78].
Technical point. The estimate of the singular integral I1(f) in Proposition 4 and its
corollary estimate (4) prompts the need to separate the case p > d

d−1
(treated first)

and p ≤ d
d−1

.
Let vn and wn be two sequences satisfying the assumptions of Theorem 1. The

idea of the proof is to decompose wn as a sum

wn = yn +∇zn, (3.6)

with
yn → y strongly in Lp

′
(Ω),

zn ⇀ z weakly in W 1,p′(Ω).

Identity (3.6) is nothing more than the Helmholtz decomposition of wn, yn being
the projection of wn on the solenoidal fields and ∇zn being the projection of wn on
the curl-free fields.
• Let p > d

d−1
and p′ the conjugate Hölder exponent of p:

p >
d

d− 1
, 1 < p′ < d and

1

p
+

1

p′
= 1 .

(1) As in the proof of the case p = p′ = 2 (see Step 1 above), we extend vn and
wn on the whole space Rd in the following way

ṽn :=

{
ϕvn in Ω
0 on Rd \ Ω

and w̃n :=

{
ψwn in Ω
0 on Rd \ Ω

.

EDMI Bordeaux 2016 7



Weak and strong convergence for PDEs Lecture 3

(2) For each n, we consider the Newtonian potential un = un(x) ∈ Rd defined by
un := Γ ? wn, which is a weak solution to

−∆un = w̃n, x ∈ Rd.

where w̃n = w̃n(x) ∈ Rd. Since by assumption w̃n is bounded in Lp′(Rd), Proposition
3 implies

‖∇un‖Lp′∗ (Rd)
+ ‖∇2un‖Lp′ (Rd) ≤ C‖w̃n‖Lp′ (Rd),

for 1/p′∗ = 1/p′ − 1/d.
(3) Define zn := −∇ · un and yn := w̃n −∇zn. We have for all α = 1, . . . d,

yαn = w̃n
α − ∂αzn = −∂β∂βuαn + ∂α∂βu

β
n = ∂β(−∂βuαn + ∂αu

β
n) = −∂β{(curlun)αβ}.

Since curlun = Γ ? curl w̃n, we have

‖∇ curlun‖Lp′∗ (Rd)
+ ‖∇2 curlun‖Lp′ (Rd) ≤ C‖ curl w̃n‖Lp′ (Rd),

from which we infer that

‖yn‖Lp′∗ (Rd)
+ ‖∇yn‖Lp′ (Rd) ≤ C‖ curl w̃n‖Lp′ (Rd).

Restricting to Ω using p′∗ > p′, we get

‖yn‖Lp′ (Ω) + ‖∇yn‖Lp′ (Ω) ≤ CΩ‖ curl w̃n‖Lp′ (Rd).

Therefore, yn is bounded in W 1,p′

0 (Ω) and Rellich’s compactness theorem implies
that (up to a subsequence)

yn → y strongly in Lp
′
(Ω).

Moreover, by a similar reasoning zn is bounded in W 1,p′

0 (Ω), so up to a subsequence,

zn → z strongly in Lp
′
(Ω),

∇zn ⇀ ∇z weakly in Lp
′
(Ω).

We thus have:
ψw = y +∇z.

(4) It remains to pass to the limit in the product, proceeding as above (integration
by parts) for the term involving ∇zn:
ˆ

Ω

vn · wnϕ =

ˆ
Rd
ṽn · w̃n =

ˆ
Ω

ṽn · (yn +∇zn)

−→
ˆ

Ω

ṽ · (y +∇z) =

ˆ
Ω

ϕv · ψw =

ˆ
Ω

v · wϕ.

The whole sequence vn ·wn converges in D′(Ω) (and not only a subsequence) because
v · w is the only possible limit.
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• Let p ≤ d
d−1

and p′ the conjugate Hölder exponent of p:

p ≤ d

d− 1
, p′ ≥ d and

1

p
+

1

p′
= 1 .

Let us outline the changes which have to be made. We concentrate on steps (2)
and (3) above. Since w̃n and curl w̃n are compactly supported in Ω, we have, for all
q < p′

‖w̃n‖Lq(Rd) ≤ C‖w̃n‖Lp′ (Rd) and ‖ curl w̃n‖Lq(Rd) ≤ C‖ curl w̃n‖Lp′ (Rd)

where C only depends on p′, q and the measure of Ω. Now we take advantage of
the gain in integrability provided by I1 by taking q < d close enough to d, so that

q∗ :=
dq

d− q
= p′.

Then,
‖∇un‖Lp′ (Rd) + ‖∇2un‖Lp′ (Rd) ≤ C‖w̃n‖Lp′ (Rd),

‖∇ curlun‖Lp′ (Rd) + ‖∇2 curlun‖Lp′ (Rd) ≤ C‖ curl w̃n‖Lp′ (Rd).

Therefore
‖yn‖Lp′ (Ω) + ‖∇yn‖Lp′ (Ω) ≤ CΩ‖ curl w̃n‖Lp′ (Rd),

and the rest of the proof is similar.

Remark 4. Notice that

∂̂αyαn = ξαŵn,α −
ξαξα
|ξ|2

ξβŵn,β = ∇̂ · wn − ∇̂ · wn = 0.

Therefore,
yn = Pw,

where P is the Leray projector. In Fourier space,

ŷn = ŵn − ξ
ξ · ŵn
|ξ|2

=

{
Id−

(
ξαξβ
|ξ|2

)
α,β

}
ŵn.

4 Applications

Convergence of the energy

From the first lecture we have

ξε(x) := A(x/ε)∇uε ⇀ A0∇u0 weakly in L2(Ω),

∇uε ⇀ ∇u0 weakly in L2(Ω).

Moreover, on the one hand
∇ · ξε = −f
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so that
‖ξε‖L2(Ω) + ‖∇ · ξε‖L2(Ω)

is bounded uniformly in ε, and on the other hand

curl(∇uε) = 0.

The div-curl lemma now implies the convergence of the energy

A(x/ε)∇uε · ∇uε ⇀ A0∇u0 · ∇u0

in the sense of distributions.

Weak continuity of the Jacobian determinant

Proposition 6. Let Ω be a bounded Lipschitz domain in Rd and uε = uε(x) ∈ Rd.
Assume that

uε ⇀ u weakly in W 1,d(Rd).

Then,
det(∇uε) ⇀ det(∇u)

in the sense of distributions.

This proposition goes back to Ball [Bal77]. A proof of the result stated here can
be found in [Mur, p. 56, Lemma 6.20] (see also [Eva90, Chapter 3.E]). Since ∇uε is
bounded in Ld(Ω), we have det(∇uε) is bounded in L1(Ω). Thus

det(∇uε) ∗
⇀ µ

to a Radon measure µ ∈ (L∞(Ω))′.
Developping with respect to the first column we have

det(∇uε) = ∂βu
ε
1m1,β(∇uε) (4.1)

where mα,β is the minor in position (α, β) associated to ∇uε.
(1) The key point is the following algebraic formula: for all ϕ ∈ C∞c (Rd),

∂1m1,1(∇ϕ) + . . . ∂dm1,d(∇ϕ) = 0. (4.2)

(2) We now extend the formula (4.2) to u ∈ W 1,d(Ω). Let u ∈ W 1,d(Ω). There
exists a sequence ϕk ∈ C∞c (Ω) such that

ϕk → u strongly in W 1,d(Ω).

Therefore,
m1,·(∇ϕk)→ m1,·(∇u) strongly in L

d
d−1 (Ω),

and for all ψ ∈ C∞c (Ω)

0 = 〈∂1m1,1(∇ϕk) + . . . ∂dm1,d(∇ϕk), ψ〉D′,D = −
ˆ

Ω

m1,·(∇ϕk) · ∇ψ

ε→0−→ −
ˆ

Ω

m1,·(∇u) · ∇ψ = 〈∂1m1,1(∇u) + . . . ∂dm1,d(∇u), ψ〉D′,D.

EDMI Bordeaux 2016 10



Weak and strong convergence for PDEs Lecture 3

(3) It follows from (4.1) that

det(∇uε) = m1,·(∇uε) · ∇uε1

has a div-curl structure. Indeed on the one hand

div(m1,·(∇uε)) = 0 D′(Ω) and m1,·(∇uε) is bounded uniformly in L
d
d−1 (Ω),

and on the other hand

curl(∇uε1) = 0 and ∇uε1 is bounded uniformly in Ld(Ω),

so that the result follows from the div-curl lemma for p = d
d−1

and p′ = d.
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