
Lecture 2: A Strange Term Coming From Nowhere

Christophe Prange∗

February 9, 2016

In this lecture, we consider the Poisson equation with homogeneous Dirichlet
boundary conditions {

−∆uε = f, x ∈ Ωε,
uε = 0, x ∈ ∂Ωε,

(0.1)

in a perforated (or porous) domain

Ωε = Ω \
nε⋃
i=1

T εi ⊂ Rd.

The source term f belongs to L2(Ω). The bounded domain Ω is perforated by nε
holes T εi . Contrary to the first lecture, the inhomogeneities are not in the coefficients,
but in the domain itself. A way to connect the two situations is to consider that in
the holes the viscosity is infinite, though we will not use this point of view.

This lecture is based on the paper by Cioranescu and Murat, A Strange Term
Coming from Nowhere in [CK97].

Several things can happen depending on the size of the holes, their density, the
way they are distributed and the distance between adjacent holes:

(1) Assume that for any K b Ω, K ⊂ Ωε for all ε sufficiently small. Then we
easily have that uε converges to the solution u0 to the Poisson problem in Ω
with Dirichlet boundary conditions on ∂Ω.

(2) Assume that the characteristic function χT ε of the holes (bounded in L∞(Ω))
converges weakly star in L∞(Ω) to a positive function χ ∈ L∞. Then the holes
fill the whole of Ω and therefore uε goes to zero. Indeed, extending uε by zero
in the holes, we get for ϕ ∈ L1(Ω),ˆ

Ω

uεϕ =

ˆ
Ωε

uεϕ =

ˆ
Ω

(
1− χ∪nε

i=1T
ε
i

)
uεϕ,

so that in the limit ˆ
Ω

u0ϕ =

ˆ
Ω

(1− χ)u0ϕ,

i.e. ˆ
Ω

χu0ϕ = 0.

Thus χu0 = 0 and by positivity of χ, u0 = 0.
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(3) The domain Ω is perforated by an increasing number of regularly distributed
holes whose diameters go to zero. This is the situation we consider in this
lecture. Of course, the two extreme cases uε goes to u0 or uε goes to 0 are still
possible. However, there is an intermediate situation where something non
trivial arises in the limit, hence the title of this lecture.

1 A general framework for the oscillating test func-
tion method

In this section, d ≥ 1.
The variational formulation for (0.1) reads: for all v ∈ H1

0 (Ωε),
ˆ

Ωε

∇uε · ∇v =

ˆ
Ωε

fv. (1.1)

We now extend any function v ∈ H1
0 (Ωε) by zero in the holes to a function

ṽ ∈ H1
0 (Ω):

ṽ(x) = v(x) for x ∈ Ωε, ṽ(x) = 0 for x ∈ T εi .
For the rest of this lecture, we drop the tildes.
Remark 1. The class of test functions in (1.1) cannot be extended to the whole
of H1

0 (Ω). The test function have to vanish on the holes. The point is that the
solution uε extended by zero in the holes belongs to H1

0 (Ω), but it does not satisfy
the equation in a neighborhood of the holes ∂T εi . On ∂T εi , there is a jump in ∇uε.
Thus ∆uε is a dirac mass (in a sense to be made precise below).

Taking v = uε ∈ H1
0 (Ωε) in the variational formulation (1.1) and using Poincaré’s

inequality, we get the a priori estimate(ˆ
Ω

|∇uε|2
)1/2

≤ C‖f‖L2(Ω).

Therefore, ‖uε‖H1(Ω) is bounded uniformly in ε so that by Rellich’s theorem yields
(up to a subsequence)

∇uεk ⇀ ∇u0 weakly in L2(Ω),

uεk → u0 strongly in L2(Ω).

Question. Can we identify the limit u0?
We have seen in the first lecture that the oscillating test function method is

useful in similar situations. Therefore, let us take a test function v := wεϕ, where
ϕ ∈ C∞c (Ω) (test function for the limit system, so no requirement to be zero on the
holes) and wε is a corrector. We adopt a heuristic approach in two steps:

(1) We first try to identify properties the correctors wε have to satisfy in order
to see something non trivial in the limit. This is the easy step in the sense
that we may impose whatever we like on wε which gives rise to interesting
phenomena in the limit.
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(2) Adding some structure on the distribution of the holes (for instance period-
icity) and taking specific scalings (size of the holes relative to the distance
between adjacent holes), we show that ad hoc correctors exist (see section 2).
This is the difficult step.

Again, wε should be thought of some function which behaves similarly to uε in
the sense that

wε is almost a solution of the Poisson equation, and it is zero on the holes.
(1.2)

The additional requirement is that

in the limit ϕwε should converge (in some sense) to ϕ, (1.3)

because ϕ is the test function for the limit system posed in Ω. As underlined in
the first lecture, the difficulty of the oscillating test function method lies in the
construction of correctors, i.e. of wε.

Keeping in mind the heuristic conditions (1.2) and (1.3), we now list a couple a
conditions on wε.

First of all, we want the test function wεϕ to belong to H1(Ω). Thus, we take

wε ∈ H1(Ω). (1.4)

Second, the test function wεϕ, in order to be admissible in (1.1), has to vanish
on ∂T εi . Therefore, we impose

wε = 0 on T εi . (1.5)

We do not impose wε = 0 on ∂Ω, since there ϕ already vanishes.
Let us now take v = wεϕ in (1.1). We have

ˆ
Ω

∇uε · ∇(wεϕ) =

ˆ
Ω

ϕ∇uε · ∇wε +

ˆ
Ω

wε∇uε · ∇ϕ =

ˆ
Ω

fwεϕ.

Provided that wε converges strongly in L2(Ω) (necessarily to 1 because we want that
ϕwε to converge to ϕ), it is easy to pass to the limit in the terms

ˆ
Ω

wε∇uε · ∇ϕ −→
ˆ

Ω

∇u0 · ∇ϕ,
ˆ

Ω

fwεϕ −→
ˆ

Ω

fϕ.

We impose
wε ⇀ 1 weakly in H1(Ω), (1.6)

which in particular implies that ∇wε → 0 in L2(Ω) and enables to get rid of one
term (see below),.
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Remark 2. If moreover wε → 1 in H1(Ω), then
ˆ

Ω

ϕ∇uε · ∇wε −→ 0,

so that u0 ∈ H1
0 (Ω) is simply a solution to the Poisson problem{

−∆u0 = f, x ∈ Ω,
u0 = 0, x ∈ ∂Ω.

(1.7)

No interesting phenomenon arises from the limit in that case.
Remark 3. Condition (1.6) prevents the holes from coalescing/merging in the limit,
because wε has to be zero on the holes. In some sense, it implies that the diameter
of the holes go sufficiently fast to zero, and that the holes are sufficiently spaced.
Remark 4 (one-dimensional case). Let d = 1 and take Ω = (0, 1) for simplicity. Let

Ωε := (0, 1) \
nε⋃
i=1

B(xεi , r
ε
i )

with xεi ∈ (0, 1). Assume that assumptions (1.4), (1.5) and (1.6) hold. Then,
a subsequence of the family of points {xεi} converges to a point x0 ∈ [0, 1]. In
dimension d = 1, Rellich’s theorem implies that H1(Ω) is compactly embedded in
C0,γ([0, 1]) for 0 < γ < 1/2. Since wε is bounded uniformly in H1(0, 1), up to a
subsequence, wε converges strongly in C0,γ([0, 1]) to w0. From (1.6), we get that
w0 = 1. Now,

|w0(x0)| = |w0(x0)− wε(xεi )| ≤ |w0(x0)− w0(xεi )|+ |w0(xεi )− wε(xεi )| −→ 0.

Therefore, w0(x0) = 0, which is a contradiction. To put it in a nutshell, there does
not exist a family of correctors wε such that (1.4), (1.5) and (1.6) hold.

Of course, if ∇uε is merely weakly convergent, then the termˆ
Ω

ϕ∇uε · ∇wε

is a product of two merely weakly convergent sequences (to 0), and nothing can be
said a priori about the limit. Let us integrate by parts in the previous term seen as
a duality product. We getˆ

Ω

ϕ∇uε · ∇wε = −
ˆ

Ω

uε∇ϕ · ∇wε − 〈∆wε, ϕuε〉H−1(Ω),H1
0 (Ω).

A priori ∆wε, as is ∆uε is no better than a distribution (actually a measure). Using
the weak convergence of the gradient, we get

−
ˆ

Ω

uε∇ϕ∇wε −→ 0.

There remains the tricky term

〈∆wε, ϕuε〉H−1(Ω),H1
0 (Ω)
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for which a priori nothing is known. If

there exists µ ∈ W−1,∞(Ω) (1.8)

such that
〈∆wε, ϕuε〉H−1(Ω),H1(Ω) −→ 〈µ, ϕu0〉H−1(Ω),H1

0 (Ω),

then (of course!) we are done. In fact, what we will prove is that −∆wε breaks
down into the difference of two measures: one µε which converges strongly to µ in
H−1(Ω), and another one γε which converges merely weakly to µ, but whose support
does not see the test function ϕuε. In more precise terms, we look for wε such that

there exists two sequences µε, γε ∈ H−1(Ω) such that −∆wε = µε − γε

µε → µ strongly in H−1(Ω) and γε ⇀ µ weakly in H−1(Ω) and
〈γε, vε〉 = 0 for all vε ∈ H1

0 (Ω) such that vε = 0 on T εi .
(1.9)

Notice that (1.8) implies

µ ∈ W−1,∞(Ω) =
(
W 1,1

0 (Ω)
)′ ⊂ H−1(Ω).

We have proved the following conditional theorem.

Theorem 1. Assume that there exist a sequence of correctors wε meeting assump-
tions (1.4), (1.5), (1.6), (1.8) and (1.9). Then, the family of solutions uε to (0.1)
converges weakly in H1(Ω) and strongly in L2(Ω) to the unique solution u0 of the
modified Poisson equation{

−∆u0 + µu0 = f, x ∈ Ω,
u0 = 0, x ∈ ∂Ω.

(1.10)

Lemma 2. The distribution µ ∈ W−1,∞(Ω) satisfying (1.9) is positive, i.e. it is a
Radon measure.

Proof. Let ϕ ∈ C∞c (Ω) such that ϕ ≥ 0. Then, by integrating by parts on Ωε first,
and second by using the convergence results (1.6) and (1.9) we get

0 ≤
ˆ

Ω

ϕ∇wε · ∇wε = 〈−∆wε, ϕwε〉H−1,H1
0
−
ˆ

Ω

wε∇ϕ · ∇wε −→ 〈µ, ϕ〉W−1,∞,W 1,1 .

Thus, 〈µ, ϕ〉W−1,∞,W 1,1 ≥ 0.

The strange term, is reminiscent from the holes, and represents some kind of
friction or drag due to the holes. It will be computed explicitly in the next section.

Lemma 3. The solution to (1.10) is unique.

Proof. Call u = u(x) the difference of two solutions of (1.10). Testing against u
yields ˆ

Ω

∇u · ∇u+ 〈µ, u2〉W−1,∞,W 1,1 = 0.

The positivity of µ (see Lemma 2) implies u = 0.
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Remark 5. The convergence proof of a subsequence of uε to a solution u0 of (1.10)
holds with µ barely H−1(Ω). In the uniqueness proof however, condition (1.8)
enables to make sense of the duality product

〈µ, u2〉W−1,∞,W 1,1 ,

since u2 is merely W 1,1(Ω).

Remark 6 (comparison between lecture 1 and 2). We now compare the ways we
pass to the limit in the variational formulation, and how we use the oscillating test
functions. We concentrate on the tricky term. In lecture 1, here is what we did for
the equation with highly oscillating coefficients: using the oscillating test function
ϕ(xγ + εχ∗,γ(x/ε)),

ˆ
Ω

A(x/ε)∇uε · ∇(xγ + εχ∗,γ(x/ε))ϕ = −〈∇ · A∗(x/ε)∇(xγ + εχ∗,γ(x/ε)), uεϕ〉

−
ˆ

Ω

uεA∗(x/ε)∇(xγ + εχ∗,γ(x/ε)) · ∇ϕ. (1.11)

Now we use the fact that xγ +εχ∗,γ(x/ε) is A∗-linear to get that the first term in the
right hand side of (1.11) is zero. It is then easy to pass to the limit in the second
term. The role of the oscillating test function for porous media in this lecture is in
some sense opposite. We use ϕwε where wε ⇀ 1 weakly in H1(Ω) in

ˆ
Ω

ϕ∇uε · ∇wε = −〈∆wε, ϕuε〉H−1(Ω),H1
0 (Ω) −

ˆ
Ω

uε∇ϕ · ∇wε, (1.12)

to see that the second term in the right hand side of (1.12) goes to zero.

2 Construction of correctors in the periodic case
The case d = 1 is very particular because of Remark 4, so we discard it. We will stick
to d ≥ 3 in order to allow for a unified presentation. However, ideas and techniques
are the same for d = 2.

We consider the Poisson problem (0.1) in the domain

Ωε := Ω \
⋃

ξ∈2εZd

B(ξ, rε) = Ω \
nε⋃
i=1

T εi ,

where T εi is a ball centered at a point ξi of the lattice 2εZd and of radius rε (see
Figure 1). We take 0 < rε < ε.

Theorem 4. Let d ≥ 3 and C0 > 0. Let aε := C0ε
d

d−2 . Then,

1. either rε � aε, then uε converges weakly in H1(Ω) and strongly in L2(Ω) to
u0 the unique solution to the Poisson problem (1.7),

2. or rε � aε, then uε converges strongly in H1(Ω) to 0,
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P ε
i

2ε

2rε
T ε
i

Bε
i

Cε
i

2
√
d−1√
d
ε

P ε
i

Figure 1: The porous medium: zoom on the unit cell P ε
i

3. or rε = aε, then uε converges weakly in H1(Ω) and strongly in L2(Ω) to the
solution u0 to (1.10), where the measure µ is an explicit constant

µ :=
Sd(d− 2)

2d
Cd−2

0

and Sd is the surface of the sphere in Rd.

The critical scale ε
d

d−2 is related to the decay of the fundamental solution of −∆
in Rd for d ≥ 3.

We define a family of 2εZd-periodic correctors wε in the following way. On the
microscopic cell [−ε, ε]d, wε = wε(x) ∈ H1([−ε, ε]d) is a solution to

wε(x) = 0, x ∈ B(0, rε),
−∆wε = 0, x ∈ B(0, ε) \B(0, rε),

wε = 1, x ∈ [−ε, ε]d \B(0, ε).
(2.1)

The condition wε ∈ H1([−ε, ε]d) contains the fact that there are no jumps at the
interfaces ∂B(0, ε) and ∂B(0, rε). By the maximum principle, 0 ≤ wε ≤ 1. The
corrector wε is then extended to the whole of Rd by periodicity and is still denoted
wε. Thus wε ∈ H1(Rd) and vanishes on the holes T εi , so (1.4) and (1.5) are satisfied.

Remark 7. The solution to (2.1) can be computed explicitely by using the rotational
invariance (polar coordinates). We have

wε(x) =
(rε)−d+2 − |x|−d+2

(rε)−d+2 − ε−d+2
, for all x ∈ B(0, ε) \B(0, rε). (2.2)

Every explicit computation relies on this formula.

Lemma 5. We have
‖∇wε‖2

L2(Ω) '
Sd(d− 2)|Ω|
(2ε)d(rε)−d+2

. (2.3)
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Proof. On the one hand, a simple count gives asymptotically

‖∇wε‖2
L2(Ω) '

|Ω|
(2ε)d

ˆ
[−ε,ε]d

|∇wε|2,

and on the other hand, an explicit computation based on (2.2) gives
ˆ

[−ε,ε]d
|∇wε|2 =

Sd(d− 2)

(rε)−d+2 − ε−d+2
.

Since ε−d+2 = o
(
(rε)−d+2

)
, we have the result.

Case rε � aε: small holes

Now, if rε � ε
d

d−2 , then by (2.3)

‖∇wε‖L2(Ω) −→ 0,

so that we are in the setting of Remark 2 and thus uε goes to the solution u0 of
(1.7). In other words, the strange term µ is zero.

Case rε � aε: large holes

Lemma 6 (Poincaré inequality in Ωε). There exists a constant C > 0 independent
of ε such that for all u ∈ H1

0 (Ωε),

‖u‖L2(Ωε) ≤ C

(
εd

(rε)d−2

)1/2

‖∇u‖L2(Ωε). (2.4)

This Poincaré inequality can be found in the paper by Allaire [All90, Lemma
3.4.1] dealing with the homogenization of the Stokes equation. It is true of course
in every regime, but in the case when rε � aε, it directly gives some information
about the limit of uε. Notice that

rε � ε
d

d−2 implies
εd

(rε)d−2

ε→0−→ 0.

Remark 8. The fact that we “gain” a factor εd/2 comes from the fact that the holes
are close to each other. The “loss” of the factor 1

rε
d−2
2

is a consequence of the fact
that the part where u is zero, that is on the holes T εi , is relatively small.

As a corollary of Lemma 6, we get:

ˆ
Ωε

|∇uε|2 ≤ ‖f‖L2(Ω)‖uε‖L2(Ω) ≤ C

(
εd

(rε)d−2

)1/2

‖f‖L2(Ω)‖∇uε‖L2(Ω),

thus (ˆ
Ω

|∇uε|2
)1/2

=

(ˆ
Ωε

|∇uε|2
)1/2

≤ C

(
εd

(rε)d−2

)1/2

‖f‖L2(Ω)
ε→0−→ 0.
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By Poincaré’s inequality in Ω(ˆ
Ω

|uε|2
)1/2

≤ C

(ˆ
Ωε

|∇uε|2
)1/2

ε→0−→ 0,

so that uε converges strongly to 0 in H1(Ω).

Proof of Lemma 6. (1) For a point ξ ∈ 2εZd, we notice that the ball B(ξ,
√
dε) is

circumscribed (touching at the vertices) to the cell P ε
ξ = [ξ − ε, ξ + ε]d centered in

ξ. One given point x ∈ Rd belongs to exactly one cell P ε
i , and maybe to some of the

2d circumscribed balls to adjacent cells. Therefore, we have the following estimate
of the L2(Ωε) norm:

‖u‖2
L2(Ωε) ≤

nε∑
i=1

‖u‖2
L2(B(ξi,

√
dε))
≤ (2d+ 1)‖u‖2

L2(Ωε).

This estimate is rather crude, but all we care about is to have equivalence of then
norms. We aim at proving Poincaré’s inequality for a function u ∈ H1(B(ξi,

√
dε)),

zero on T εi = B(ξi, r
ε).

(2) For simplicity (everything is translation invariant) let us consider the point
ξ = 0. Let r denote the radial variable. Let u ∈ C0(B(0,

√
dε)) ∩ H1(B(0,

√
dε))

such that u(x) = 0 on r = rε. For x ∈ B(0,
√
dε), the radial vector er is equal to

x/|x|. Writing the fundamental theorem of calculus by taking x as the reference
point (rather than 0), for the function

t 7→ u(x+ (t− r)er)

yields

u(x) =

ˆ r

rε
∇u(x+ (t− r)er) · erdt.

Then, integrating over x = rω ∈ B(0,
√
dε),

‖u‖2
L2(B(0,

√
dε))
≤ C

ˆ
Sd−1

ˆ √dε
rε

(ˆ r

rε
∇u(rω + (t− r)ω) · ωdt

)2

rd−1drdω.

Cauchy-Schwarz’s inequality yields(ˆ r

rε
∇u(rω + (t− r)ω) · ωdt

)2

≤
(ˆ r

rε
|∇u(rω + (t− r)ω) · ω|2 td−1dt

)(ˆ r

rε

dt

td−1

)
≤

(ˆ √dε
rε

[∇u(rω + (t− r)ω) · ω]2 td−1dt

)(ˆ √dε
rε

dt

td−1

)
.

Therefore,

‖u‖2
L2(B(0,

√
dε))
≤
ˆ
Sd−1

ˆ √dε
rε

ˆ √dε
rε
|∇u(rω + (t− r)ω)|2 td−1dtrd−1drdω

(ˆ √dε
rε

dt

td−1

)

≤ Cεd‖∇u‖2
L2(B(0,

√
dε))

(ˆ √dε
rε

dt

td−1

)
≤ C

εd

(rε)d−2
,

since rε � ε.
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Case rε = aε: critical size

We focus now on the case when rε ' ε
d

d−2 . More precisely, we assume that rε =

C0ε
d

d−2 . In this regime, it follows from (2.3) that

‖∇wε‖2
L2(Ω)

ε→0−→ Sd(d− 2)|Ω|
2d

Cd−2
0 .

This fact combined with the bound 0 ≤ wε ≤ 1 infered from (2.2) yields that wε is
bounded in H1(Ω), so that

wε ⇀ w weakly in H1(Ω),

wε → w strongly in L2(Ω).

We aim at showing that w = 1. In that perspective, we use the fact that

wε ≡ 1 on Cε :=
nε⋃
i=1

Cε
i .

We denote the characteristic function of Cε by χCε . Let E be a measurable set in
Ω and χE its characteristic function. We have
ˆ

Ω

χCεχE = |Cε ∩ E| ε→0∼ |E|
(2ε)d

|Cε
i | =

|E|
(2ε)d

(√
d− 1√
d

)d

(2ε)d = |E|

(√
d− 1√
d

)d

.

Therefore

χCε
?
⇀

(√
d− 1√
d

)d

weakly star in L∞(Ω).

We argue now as in point (2) of the introduction (see above): by definition of wε

wεχCε = χCε ,

so that passing to the weak limit (using the strong convergence of wε in L2) we get(√
d− 1√
d

)d

(w − 1) = 0,

i.e. w = 1 which proves (1.6).
Our next (and final goal) is to compute −∆wε. Since the gradient of wε has

jumps at the interfaces ∂Bε
i ∪ T εi , −∆wε is a distribution (actually a measure)

supported on ∂Bε
i ∪ ∂T εi . We have, for all ϕ ∈ C∞c (Rd)

〈−∆wε, ϕ〉D′,D = 〈∇wε,∇ϕ〉D′,D

=

ˆ
Rd

∇wε · ∇ϕ

=
nε∑
i=1

ˆ
Bε

i \T ε
i

∇wε · ∇ϕ

=
nε∑
i=1

ˆ
∂Bε

i

∇wε · nextϕ+
nε∑
i=1

ˆ
∂T ε

i

∇wε · nextϕ,
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the last line following by integration by parts, and the fact that
ˆ
Bε

i \T ε
i

∆wεϕ = 0.

To summarize
−∆wε = µε − γε,

with

〈µε, ϕ〉H−1(Ω),H1
0 (Ω) =

nε∑
i=1

ˆ
∂Bε

i

∇wε · nextϕ

=
(d− 2)Cd−2

0

1− Cd−2
0 ε2

nε∑
i=1

ε

ˆ
∂Bε

i

ϕ(s)σ(ds)

(the explicit formula is computed thanks to (2.2)), and

〈γε, ϕ〉H−1(Ω),H1
0 (Ω) = −

nε∑
i=1

ˆ
∂T ε

i

∇wε · nextϕ.

We clearly have that for all vε ∈ H1
0 (Ωε) (i.e. vε is zero on the holes),

〈γε, vε〉H−1(Ω),H1
0 (Ω) = 0.

It remains to check that µε converges strongly in H−1(Ω) (even in W−1,∞(Ω)) to
µ ∈ W−1,∞(Ω). Let δ∂Bε

i
be the distribution defined by

〈δεi , ϕ〉D′,D =

ˆ
∂Bε

i

ϕ(s)σ(ds) for ϕ ∈ D(Rd).

Lemma 7. We have
nε∑
i=1

εδεi →
Sd
2d

strongly in W−1,∞
loc (Rd).

It follows from the lemma that

µε → µ :=
(d− 2)Sd

2d
Cd−2

0 strongly in W−1,∞
loc (Rd)

Proof of Lemma 7. (1) We first show that

nε∑
i=1

εδεi = −∆qε − dχBε , (2.5)

where Bε =
⋃nε

i=1B
ε
i . Here qε is the unique solution to the Neumann problem{

−∆qε = d, x ∈
⋃nε

i=1B
ε
i ,

∇qε · next = ε, x ∈
⋃nε

i=1 ∂B
ε
i ,

(2.6)
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such that qε = 0 on ∂Bε
i . We extend qε by zero on Rd \ Bε. Notice that the

compatibility condition ˆ
Bε

i

−δqε =

ˆ
∂Bε

i

∇qε · next

is satisfied. Let us prove (2.5): integrating by parts against ϕ ∈ C∞c (Rd), we get

〈−∆qε, ϕ〉D′,D = 〈∇qε,∇ϕ〉D′,D

=

ˆ
Rd

∇qε · ∇ϕ

=
nε∑
i=1

ˆ
∂Bε

i

∇qε · nextϕ+ d

ˆ
Bε

ϕ

=
nε∑
i=1

ε〈δεi , ϕ〉 − 〈dχBε , ϕ〉.

(2) The solution qε of (2.6) is radially symmetric, thus

−∆qε =
1

rd−1
∂r
(
rd−1∂rq

ε(r)
)

= d implies ∂rq
ε(r) = r,

r being the distance from a point in Bε
i to the center ξi. Eventually,

‖∇qε‖L∞(Rd) ≤ ε,

so that
qε → 0 strongly in W 1,∞(Rd).

This convergence directly implies

−∆qε → 0 strongly in W−1,∞(Rd).

Moreover,
〈χBε , ϕ〉L∞(Rd),L1(Rd) −→ 〈χ, ϕ〉L∞(Rd),L1(Rd), (2.7)

where
χ =

ˆ
Td

χB(y)dy = |Bd(0, 1/2)| = |Bd(0, 1)|
2d

=
|Sd(0, 1)|

2dd
.

From (2.7) we get that (up to a subsequence)

χBε → χ strongly in W−1,∞(Ω),

hence the lemma.
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