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In this lecture, we consider the divergence form elliptic equation (or system){
−∇ · A(x/ε)∇uε = f, x ∈ Ω,

uε = 0, x ∈ ∂Ω,
(0.1)

with highly oscillating periodic coefficients. For ease of notation, we will only con-
sider equations, although everything straightforwardly extends to systems.

The domain Ω is a compact subset of Rd, uε = uε(x) ∈ R, A = (Aαβ(y)) and
f ∈ L2(Ω). Let us assume that:

(A1) A is elliptic, i.e. there exists λ > 0, such that for all ξ ∈ Rd, for all y ∈ Rd,

λ|ξ|2 ≤ A(y)ξ · ξ ≤ λ−1|ξ|2,

(A2) A is Zd-periodic, i.e. A = A(y) with y ∈ Td.

1 A priori bounds and one dimensional case

A priori bounds

The weak formulation of the Dirichlet problem (0.1) reads: for all v ∈ H1
0 (Ω),

ˆ
Ω

A(x/ε)∇uε · ∇v =

ˆ
Ω

fv. (1.1)

Taking v = uε in the previous weak formulation, Poincaré’s inequality implies the a
priori bound

‖∇uε‖L2(Ω) ≤ C‖f‖L2(Ω),

with C = C(d,Ω, λ).
Therefore, (using Poincaré’s inequality one more time) uε is bounded in H1(Ω)

uniformly in ε. The compact injection H1(Ω) into L2(Ω) (Rellich’s theorem) now
implies

∇uεk ⇀ ∇u0 weakly in L2(Ω),

uεk → u0 strongly in L2(Ω),

ξεk := A(x/εk)∇uεk ⇀ ξ0 weakly in L2(Ω).
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Passing to the limit in (1.1) we get for all v ∈ H1
0 (Ω),ˆ

Ω

ξ0 · ∇v =

ˆ
Ω

fv. (1.2)

Question. Is ξ0 of the form ξ0 = A0∇u0 for some matrix A0?
The answer is non trivial. Indeed, since A is periodic

A(x/εk) ⇀ A := −
ˆ
Td
A(y)dy weakly in L2(Ω).

This convergence cannot be improved to strong convergence. Moreover, there are
no obvious a priori bounds uniform in ε making it possible to improve the weak
convergence of ∇uε into strong convergence. Therefore, the product

ξεk = A(x/εk)∇uεk

is a product of weakly converging sequences. A priori

ξ0 6= A∇u0.

Particular case of dimension one

In dimension one, the equation gives additional controls, which make it possible
to improve the convergence of ξεk from weak to strong convergence in L2(Ω). Our
equation reads

∂x(ξ
εk) = ∂x (A(x/εk)∂xu

εk) = f, (1.3)

for Ω = (0, 1). This equation (contrary to the case d ≥ 2) gives that the whole
gradient of ξεk is controlled, not only the divergence: ∂x(ξεk) is bounded in L2(Ω),
which together with the a priori bound above implies that ξεk is bounded in H1(Ω).
By Rellich’s theorem, we then infer that (up to extracting a subsequence still denoted
the same)

ξεk → ξ0 strongly in L2(Ω).

Now,

∂xu
0 ↼ ∂xu

εk =
ξεk

A(x/εk)
⇀ ξ0A−1,

the last convergence being seen as a product of a strongly times a weakly convergent
sequence. Therefore, identifying the limit on the left and on the right, we get

ξ0 =
1

A−1
∂xu

0.

We notice that:

(1) the limit equation has the same form as (1.3), i.e. it is divergence form, elliptic,

−∂x(A0∂xu
0) = f, x ∈ (0, 1)

with A0 a constant matrix,

A0 :=
1

A−1
, (1.4)
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(2) of course, the whole sequence converges (there is just one possible limit), not
only a subsequence,

(3) even in this (simple) case, the limit of ξεk is not equal in general to the product
of the weak limits!

2 Multiscale expansions and existence of correctors
There are two scales in the problem: the slow scale x and the fast scale y = x/ε.
Let us assume that uε retains this structure and therefore we speculate the following
Ansatz:

uε(x) ' u0(x, x/ε) + εu1(x, x/ε) + ε2u2(x, x/ε) + . . .

with ui = ui(x, y) Zd-periodic in y. Let us simply plug the Ansatz in the equa-
tion (0.1) and identify the different powers of ε. This leaves us with a cascade of
equations:

−∇y · A(y)∇yu
0 = 0,

−∇y · A(y)∇yu
1 = ∇y · A(y)∇xu

0 +∇x · A(y)∇yu
0,

−∇y · A(y)∇yu
2 = f +∇y · A(y)∇xu

1 +∇x · A(y)∇yu
1 +∇x · A(y)∇xu

0.

Each equation is posed on the torus Td, where x is but a parameter. The first
equation implies that u0 is a constant, i.e. u0 = u0(x). This is somehow expected
since u0 is meant to represent an averaged behavior of uε. The second equation
becomes

−∇y · A(y)∇yu
1 = ∇y · A(y)∇xu

0 = ∂yαA
αγ(y)∂xγu

0.

By linearity, we can look for u1 of separated form

u1(x, y) = χγ(y)∂xγu
0(x),

where χ = χγ(y) ∈ R, 1 ≤ γ ≤ d is a solution to the cell (or interior) corrector
problem

−∇ · A(y)∇χγ = ∂αA
αγ, y ∈ Td and −

ˆ
Td
χγ(y)dy = 0. (2.1)

This problem has a unique weak solution, uniqueness coming from the Poincaré-
Wirtinger inequality: for all ϕ ∈ H1(Td),∥∥∥∥ϕ−−ˆ

Td
ϕ

∥∥∥∥
L2(Td)

≤ C‖∇ϕ‖L2(Td).

Notice that the function yγ + χγ(y) is a solution of

−∇ · A(y)∇ (yγ + χγ) = 0, y ∈ Rd.

We say that yγ + χγ is an A-linear function. Rescaling, we get

−∇ · A(x/ε)∇ (xγ + εχγ(x/ε)) = 0, x ∈ Rd. (2.2)
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It remains to look at the last equation in our hierarchy (of course, one could go on
forever). On the left hand side, −∇y · A(y)∇yu

2(x, y) is a periodic function in y,
therefore,

0 = −
ˆ
Td

{
∇y · A(y)∇yu

2
}
dy

=

ˆ
Td

{
f +∇y · A(y)∇xu

1 +∇x · A(y)∇yu
1 +∇x · A(y)∇xu

0
}

= f(x) +

ˆ
Td

{
Aαβ(y)∂yβχ

γ(y)∂xα∂xγu
0(x) + Aαβ(y)∂xα∂xβu

0(x)
}
dy.

Eventually we get

−
ˆ
Td

{
Aαγ(y)∂yγχ

β(y) + Aαβ(y)
}
∂xα∂xβu

0(x) = f(x) for x ∈ Ω,

or in a more compact form

−∇ · A0∇u0 = f(x) for x ∈ Ω,

where
A0 :=

ˆ
Td

{
Aαγ(y)∂yγχ

β(y) + Aαβ(y)
}
dy

is the constant homogenized matrix.

Remark 1 (correctors for d = 1). In dimension d = 1, we clearly have

∂yχ(y) =
C1

A(y)
− 1.

It remains to compute the constant C1. Using that χ is periodic, we have

0 =

ˆ
Td
∂yχ(y)dy = C1A−1 − 1,

so that
C1 =

1

A−1
.

Plugging the expression of A(y)∂yχ, we recover the formula for A0 discovered in
(1.4).

3 Oscillating test function method
As underlined above, the product ξεk = A(x/εk)∇uεk is a product of two weakly
convergent sequences. Apart from dimension one, there is, it seems, no easy way to
improve these convergences from weak to strong. We now drop the subscript k and
just write ε.

A fundamental idea to untangle this situation (and many others) has been sug-
gested and developped by Tartar in the late 70’s (Tartar 1977 Cours Peccot, see
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Murat and Tartar, H-Convergence in [CK97]). We take in the weak formulation 1.1
particular test functions, namely oscillating test functions, whose behavior mimic
the behavior of uε.

Two (among many!) references on the oscillating test function method, also
called energy method, are the book by Cioranescu and Donato [CD99] in particular
Chapter 8, and the book by Evans [Eva90] in particular Chapter 5.A.2.

(1) Let χ∗ be the cell corrector for the adjoint equation

−∇ · A∗(y)∇χ∗,γ = ∂αA
γα, y ∈ Td and −

ˆ
Td
χ∗,γ(y)dy = 0. (3.1)

Let vε = vε(x) := xγ + εχ∗,γ(x/ε). For ϕ ∈ C∞c (Ω), we take v = ϕvε. By (2.2),

−∇ · A∗(x/ε)∇vε = 0 in Ω.

One can think in the case when A is symmetric that the oscillations of vε(x) imitate
the oscillations of uε (at least away from boundaries). Notice that

vε −→ xγ strongly in L2(Ω),

and

(A∗(x/ε)∇vε)α = A∗αγ(x/ε) + A∗αβ(x/ε)∂yβχ
∗,γ(x/ε)

⇀ A∗αγ + A∗αβ∂yβχ
∗,γ = −

ˆ
Ω

A∗αγ(y) + A∗αβ(y)∂yβχ
∗,γ(y)dy.

(2) Taking the test function v = ϕvε as above, we get
ˆ

Ω

A(x/ε)∇uε · ∇ϕvε +

ˆ
Ω

A(x/ε)∇uε · ∇vεϕ =

ˆ
Ω

fϕvε. (3.2)

It is easy to pass to the limit in the right hand side of the previous equality:ˆ
Ω

fϕvε −→
ˆ

Ω

fϕxγ.

By the strong convergence of vε, we haveˆ
Ω

A(x/ε)∇uε · ∇ϕvε −→
ˆ

Ω

ξ0 · ∇ϕxγ.

It remains to pass to the limit in the second term of the left hand side of (3.2).
Integrating by parts, and using that vε is A∗-linear, we get
ˆ

Ω

A(x/ε)∇uε · ∇vεϕ = −
ˆ

Ω

uεA∗(x/ε)∇vε · ∇ϕ

−→ −
ˆ

Ω

u0
(
A∗αγ + A∗αβ∂yβχ

∗,γ
)
∂xαϕ =

ˆ
Ω

(
A∗αγ + A∗αβ∂yβχ

∗,γ
)
∂xαu

0ϕ.

Consequently,ˆ
Ω

ξ0 · ∇ϕxγ +

ˆ
Ω

(
A∗αγ + A∗αβ∂yβχ

∗,γ
)
∂xαu

0ϕ =

ˆ
Ω

fϕxγ.
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(3) Now, taking v(x) = xγϕ in the weak formulation (1.2), we get
ˆ

Ω

fϕxγ =

ˆ
Ω

ξ0 · ∇ϕxγ +

ˆ
Ω

ξ0,γϕ.

(4) We end up with
ˆ

Ω

(
A∗αγ + A∗αβ∂yβχ

∗,γ
)
∂xαu

0ϕ =

ˆ
Ω

ξ0,γϕ,

i.e.
ξ0,γ =

(
A∗αγ + A∗αβ∂yβχ

∗,γ
)
∂xαu

0 = A0,γα∂xαu
0,

which concludes the proof.
One can show that(

A∗αγ + A∗αβ∂yβχ
∗,γ
)

=
(
Aγα + Aγβ∂yβχ

α
)
,

so that eventually
A0 := A+ A∇χ.

Moreover, since

−
ˆ
Td
∇ · A(y)∇χβχαdy = −

ˆ
Td
Aγβ(y)∂yγχ

α,

we haveˆ
Td
A(y)∇(yβ + χβ) · ∇(yα + χα)dy

= −
ˆ
Td
∇ · A(y)∇χβχαdy +

ˆ
Td
Aαγ(y)∂yγχ

βdy +

ˆ
Td
Aγβ(y)∂yγχ

αdy +

ˆ
Td
Aαβ(y)dy

= A0,αβ.

Therefore, A0 is elliptic: for all η, η̂ ∈ Rd

Aη · η̂ + Aη̂ · η ≥ 2

λ
η · η̂

so that

A0,αβξαξβ =

ˆ
Td
A(y)∇(yβ + χβ)ξβ · ∇(yα + χα)ξαdy

=
∑
α≤β

ˆ
Td

{
A(y)∇(yβ + χβ)ξβ · ∇(yα + χα)ξα + A(y)∇(yα + χα)ξα · ∇(yβ + χβ)ξβ

}
dy

≥ 1

λ

∑
α,β

ˆ
Td
∇(yβ + χβ)ξβ · ∇(yα + χα)ξαdy =

1

λ

ˆ
Td
|∇(yα + χα)ξα|2

≥ 1

λ

∣∣∣∣ˆ
Td
∇(yα + χα)ξα

∣∣∣∣2 =
1

λ
|ξ|2,

the last line following from Jensen’s inequality.
We have proved the following theorem:
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Theorem 1. The family of solutions uε of (0.1) converges weakly in H1
0 (Ω) and

strongly in L2(Ω) to the solution u0 of{
−∇ · A0∇u0 = f, x ∈ Ω,

u0 = 0, x ∈ ∂Ω.
(3.3)

A few comments:

(1) Remark: Oscillating test function method works extremely well (and easily).

(2) Question of convergence becomes: How to construct an ad hoc oscillating test
function (in particular oscillating part vε) in more general situations (A not
periodic, but quasi-, almostperiodic, or random; porous media)?

(3) The crucial point in this proof is vε → xγ strongly in L2(Ω). This is a conse-
quence of the fact that χ∗ is bounded (sublinear would be enough).

4 Error estimates
Our goal is to estimate the remainder

rε(x) := uε(x)− u0(x)− εχ(x/ε) · ∇u0(x).

We have

∇rε(x) = ∇uε(x)−∇u0(x)−∇yχ(x/ε) · ∇u0(x)− εχ(x/ε) · ∇2u0(x),

A(x/ε)∇rε(x) = A(x/ε)∇uε(x)− A(x/ε)∇u0(x)

− A(x/ε)∇yχ(x/ε) · ∇u0(x)− A(x/ε)χ(x/ε) · ∇2u0(x),

and

−∇ · A(x/ε)∇rε(x) = f(x) +
1

ε

(
∇y · A(x/ε)

)
∇u0(x) + A(x/ε) · ∇2u0(x)

+
1

ε
{∇ · (A(y)∇χ)} (x/ε)∇u0(x)+A(x/ε)∇χ(x/ε)·∇2u0(x)+ε∇·{A(x/ε)χ(x/ε)·∇2u0(x)}.

Now, the terms of order ε−1 vanish because χ is a solution of the cell corrector
equation (2.1). Therefore,

−∇ · A(x/ε)∇rε(x) = f(x) +
{
Aαβ(x/ε) + Aαγ(x/ε)∂yγχ

β(x/ε)
}
∂xα∂xβu

0(x)

+ ε∇ · {A(x/ε)χ(x/ε) · ∇2u0(x)}.

For 1 ≤ α, β ≤ d, let

ψαβ(y) := Aαβ(y) + Aαγ(y)∂yγχ
β(y).

Notice that, ˆ
Td
ψαβ∂xα∂xβu

0(x) = ∇ · A0∇u0(x) = −f(x),
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so that

ψαβ(x/ε)∂xα∂xβu
0(x) =

{
ψαβ(x/ε)−

ˆ
Td
ψαβ

}
∂xα∂xβu

0(x)− f(x).

Eventually

−∇·A(x/ε)∇rε(x) =

{
ψαβ(x/ε)−

ˆ
Td
ψαβ

}
∂xα∂xβu

0(x)+ε∇·{A(x/ε)χ(x/ε)·∇2u0(x)}.

(4.1)
We need to work on the first term in the right hand side of the previous equation,

to show it is actually of order ε.

Lemma 2. Let F = F (y) ∈ Rd be an L2(Td) function such that
ˆ
Td
F = 0 and ∇ · F = 0.

Then, there exists Wαβ ∈ H1(Td) such that

Wαβ = −Wβα and Fβ = ∂yαWαβ.

Proof. For all 1 ≤ α ≤ d, let fα ∈ H2(Td) be the solution to

∆fα = Fα y ∈ Td and
ˆ
Td
fα = 0.

Notice that ∇ · F = 0 implies ∇ · f is constant. Now let

W = curl f i.e. for all 1 ≤ α, β ≤ d,Wαβ := ∂yαfβ − ∂yβfα.

Clearly, Wαβ = −Wβα and

∂yαWαβ = ∂yα∂yαfβ − ∂yβ∂yαfα = ∆fβ = Fβ,

which concludes the proof.

The cell corrector equation (2.1) implies that

∂yα

(
ψαβ −

ˆ
Td
ψαβ

)
= 0,

and we have ˆ
Td

(
ψαβ −

ˆ
Td
ψαβ

)
= 0.

Therefore, for fixed β, we can apply the lemma to

F = ψ·β −
ˆ
Td
ψ·β,

and get the existence of Ψγαβ(y) such that

ψαβ −
ˆ
Td
ψαβ = ∂yγΨγαβ and Ψγαβ = −Ψαγβ. (4.2)
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We finally use Ψγαβ to rewrite the first term in the right hand side of (4.1):{
ψαβ(x/ε)−

ˆ
Td
ψαβ

}
∂xα∂xβu

0(x) = ∂yγΨγαβ(x/ε)∂xα∂xβu
0(x)

= ε∂xγ
(
Ψγαβ(x/ε)∂xα∂xβu

0(x)
)
− εΨγαβ(x/ε)∂xα∂xβ∂xγu

0(x).

It happens that the last term involving three derivatives of u0 is zero:

Ψγαβ(x/ε)∂xα∂xβ∂xγu
0(x) =

d∑
α=1

d∑
β=1

d∑
γ=1

Ψγαβ(x/ε)∂xα∂xβ∂xγu
0(x)

=
d∑

β=1

{∑
α<γ

+
∑
γ<α

+
∑
α=γ

}
=

d∑
β=1

{∑
α<γ

−
∑
α<γ

}
= 0,

because of the second property in (4.2).
To put it in a nutshell

−∇ · A(x/ε)∇rε(x) = ε∇ ·
(
Ψ(x/ε) · ∇2u0(x)

)
+ ε∇ · {A(x/ε)χ(x/ε) · ∇2u0(x)}.

These two terms are divergence form, so one can integrate by parts. By linearity, rε
is the sum of rεint solving{
−∇ · A(x/ε)∇rεint = ε∇ · (Ψ(x/ε) · ∇2u0(x)) + ε∇ · {A(x/ε)χ(x/ε) · ∇2u0(x)}, x ∈ Ω,

rεint = 0, x ∈ ∂Ω,

and the boundary layer term uεbl solving{
−∇ · A(x/ε)∇uεbl = 0, x ∈ Ω,

uεbl = −χ(x/ε) · ∇u0(x), x ∈ ∂Ω.

Theorem 3. Assume that u0 ∈ H2(Ω) and A ∈ L∞(Rd) (for an equation), A ∈
C0,µ(Rd), µ > 0 (for a system). Then∥∥uε − u0 − εχ(x/ε) · ∇u0 − εu1,ε

bl

∥∥
H1(Ω)

. ε‖u0‖H2(Ω).

Remark 2. The more higher-order correctors, the more regularity is needed on u0.

Proposition 4. Assume that:

(1) Ω is of class C2, so that u0 ∈ H2(Ω),

(2) A is C0,µ, µ > 0, so that χ ∈ W 1,∞(Rd).

Then, ∥∥uε − u0 − εχ(x/ε) · ∇u0
∥∥
H1(Ω)

. ε1/2‖f‖L2(Ω).

Notice that if u ∈ W 1,∞(Ω) and v ∈ H1(Ω), then uv ∈ H1(Ω). Thus by assump-
tion of the previous proposition χ(·/ε) · ∇u0 ∈ H1(Ω). Moreover,

‖u1,ε
bl ‖H1(Ω) .

1

ε1/2
‖∇u0‖H3/2(∂Ω).
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In particular,

∇uε(x)−∇u0(x)−∇yχ(x/ε) · ∇u0(x)→ 0 strongly in L2(Ω).

This shows that one has to add the corrector term ∇yχ(x/ε) · ∇u0(x) to upgrade
the weak convergence of the gradient ∇uε into a strong convergence in L2(Ω).

Remark 3. It is a fundamental (and generally difficult) problem to construct bounded
correctors (see the fourth lecture), or to have an information on how the corrector
grows at space infinity. Such information directly translates into error estimates.
Actually, the construction and estimation of correctors is the main problem of the
proof of error estimates. This problem is trivial in the periodic setting considered
in this lecture.
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