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This set of lectures is motivated by the following kind of phenomena:

sin(x/ε) ⇀ 0, while sin2(x/ε) ⇀ 1/2.

Therefore the weak limit of the product is in general different from the product
of the weak limits. We will analyze this incompatibility of weak convergence with
products in the context of linear and nonlinear Partial Differential Equations.

The goal of the lectures is to introduce some methods, either using soft analysis
i.e. weak convergence methods (for instance the structure of the nonlinear term)
or hard analysis i.e. strong convergence methods (construction of correctors). The
lectures will cover subjects which are familiar to the author, particularly homo-
genization theory. One of the intention is to show that hard analysis requires to
understand some underlying dynamical problems. The plan of the course goes as
follows:

(1) information on weak limits by oscillating test functions (lectures 1 and 2) or
subtle cancellations (lecture 3),

(2) refined information via the construction of interior and boundary layer correc-
tors correctors (lectures 4 and 5),

(3) regularity theory for elliptic equations via compactness methods (lecture 6).

This is only a very small part of all the methods and phenomena that one could talk
about in such a course. Many important subjects will be ignored (young measures,
defect measures, vanishing viscosity for Hamilton Jacobi equations. . . ). To get a
glimpse into some of these topics, one should read Evans’ inspiring book [Eva90].

A few classical results
Most of the following material can be found in [Bre83] or [Eva90].

Proposition 1 (weak convergence in a Banach space). Let E be a Banach space,
E ′ its dual, and let 〈·, ·〉E′,E denote the duality bracket. Let (xn) be a sequence in E.
The following statements hold:
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(1) xn ⇀ x weakly in E (alternative notation σ(E,E ′)) is equivalent to for all
f ∈ E ′, 〈f, xn〉E′,E → 〈f, x〉E′,E.

(2) If xn ⇀ x weakly in E, then ‖xn‖E is bounded and ‖x‖E ≤ lim inf ‖xn‖E.

(3) If xn ⇀ x weakly in E and fn → f strongly in E ′, then

〈fn, xn〉E′,E → 〈f, x〉E′,E.

The second point is a consequence of Banach-Steinhaus’s theorem.

Proposition 2 (weak star convergence). Let E be a Banach space, E ′ its dual, and
let 〈·, ·〉E′,E denote the duality bracket. Let (fn) be a sequence in E ′. The following
statements hold:

(1) fn
?
⇀ f weakly star in E ′ (alternative notation σ(E ′, E)) is equivalent to for

all x ∈ E, 〈fn, x〉E′,E → 〈f, x〉E′,E.

(2) If fn
?
⇀ f weakly star in E ′, then ‖fn‖E′ is bounded and ‖f‖E′ ≤ lim inf ‖fn‖E′.

(3) If fn
?
⇀ f weakly star in E ′ and xn → x strongly in E, then

〈fn, xn〉E′,E → 〈f, x〉E′,E.

Proposition 3 (Banach Alaoglu theorem). The unit ball BE′(0, 1) of the dual space
E ′ is compact for the weak star topology σ(E ′, E).

Proposition 4 (Kakutani). A Banach space E is reflexive if and only if the unit
ball BE(0, 1) of E is compact for the weak topology σ(E,E ′).

Let fn ∈ L1(R) be defined by

fn(x) =

{
n, x ∈

(
0, 1

n

)
,

0, x elsewhere.

Then ‖fn‖L1(R) = 1 and by the fundamental theorem of calculus, for all ϕ ∈ C0
c (R),

ˆ
(0,1)

fn(x)ϕ(x) = n

ˆ 1/n

0

ϕ(x)dx −→ ϕ(0).

Therefore, fn
?
⇀ δ0 weakly star in the space of Radon measures.

Proposition 5 (weak convergence in a Hilbert space). Let H be a Hilbert space
and let 〈·, ·〉 denote its scalar product. Assume that xn ⇀ x weakly in H and that
‖xn‖H → ‖x‖H . Then, xn → x strongly in H.

This property comes from the polarization formula:

‖x− xn‖2
H = ‖x‖2

H + ‖xn‖2
H − 2〈xn, x〉.

It does not hold in a general Banach space. However, we have the following re-
finement for Lp(Ω), 1 < p < ∞ and Ω an arbitrary open subset of Rd, and more
generally for any uniformly convex Banach space E.
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Proposition 6. Let 1 < p <∞ and Ω be a open subset of Rd. Let (fn) be a sequence
in Lp(Ω) such that fn ⇀ f weakly in Lp(Ω) and

lim sup ‖fn‖Lp(Ω) ≤ ‖f‖Lp(Ω).

Then fn → f strongly in Lp(Ω).

We refer to [Bre83, Proposition III.30] for the proof of the proposition for a
general uniformly convex Banach space, and to [Bre83, Theorem IV.10] for the
proof of the uniform convexity of Lp(0, 1).

How about L1(0, 1)? Take fn ∈ L2(0, 1) defined by

fn(x) =

{
1, x ∈

(
k
n
, 2k+1

2n

)
,

0, x ∈
(

2k+1
2n

, k+1
n

)
.

Then fn ⇀ 1/2 weakly in L2(0, 1) (and weakly in L1(0, 1)). Moreover,

‖fn‖L1(0,1) = 1/2 = ‖1/2‖L1(0,1),

but
‖fn‖L2(0,1) = 1/

√
2 6= 1/2 = ‖1/2‖L1(0,1).

It is thus clear that fn does not converge strongly in L2(0, 1), therefore neither in
L1(0, 1).

Proposition 7. Let 1 ≤ p ≤ ∞ and f = f(y) be a Zd-periodic function. Assume
that f ∈ Lp(Td). Let

f̄ := −
ˆ
Td

f.

Then, for any K b Rd,

(1) for 1 ≤ p <∞
f(x/ε) ⇀ f̄ weakly in Lp(K),

(2) for p =∞,
f(x/ε)

∗
⇀ f̄ weakly star in L∞(K).

Remark 1 (weak convergence and nonlinear function). Let F = F (u) ∈ R be a
nonlinear function. Take a < b and 0 < λ < 1 so that

F (λa+ (1− λ)b) 6= λF (a) + (1− λ)F (b).

We define
un(x) =

{
a, x ∈

(
j
n
, j+λ

n

)
,

b, x elsewhere.

Then, by the previous proposition

un
?
⇀ u = λa+ (1− λ)b weakly star in L∞(0, 1),

F (un)
?
⇀ λF (a) + (1− λ)F (b) 6= F (λa+ (1− λ)b) weakly star in L∞(0, 1).
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Theorem 8 (Rellich’s compactness theorem). Let Ω be a bounded domain of Rd.
Let 1 ≤ p ≤ d and let p∗ := pd

d−p .

(1) If the sequence un is bounded in W 1,p
0 (Ω), then un is precompact in Lq(Ω) for

all 1 ≤ q < p∗.

(2) Assume in addition that Ω is Lipschitz. If the sequence un is bounded in
W 1,p(Ω), then un is precompact in Lq(Ω) for all 1 ≤ q < p∗.

In other words, if Ω is Lipschitz, then W 1,p(Ω) b Lq(Ω) for all 1 ≤ q < p∗. For
a proof, see Chapter 7 of the book by Gilbarg and Trudinger [GT01].

A simple proof of Rellich’s theorem

We give a simple proof of Rellich’s injection theorem (due to Hörmander) based
on the use of the Fourier transform: for an arbitrary bounded domain Ω, H1

0 (Ω) is
compactly embedded in L2(Ω).

The proof goes as follows. Let un be a bounded sequence in H1
0 (Ω). First we

extend un by 0 outside Ω. The extension belongs to H1(Rd) and is still denoted by
un. Since un is bounded in L2(Rd), there is a weakly converging subsequence (still
denoted un):

un ⇀ u weakly in L2(Rd).

If we show that
‖un‖L2(Rd) −→ ‖u‖L2(Rd),

then we have that un converges strongly to u in L2(Rd) (thus in L2(Ω)).
Now, for R > 0,

ˆ
Rd

u2
n =

ˆ
Rd

ûnûn =

ˆ
B(0,R)

ûnûn +

ˆ
Rd\B(0,R)

ûnûn.

Low frequencies The low frequencies are handled by Lebesgue’s theorem, using:

(1) the fact that
‖ûn‖L∞(Rd) ≤ ‖un‖L1(Rd) ≤ CΩ‖un‖L2(Ω)

is bounded uniformly in n,

(2) and that the weak convergence of un in L2(Ω) implies the pointwise conver-
gence of ûn(ξ), i.e. for all ξ ∈ Rd,

ûn(ξ) =

ˆ
Ω

un(x) exp(−ix · ξ)dξ −→
ˆ

Ω

u(x) exp(−ix · ξ)dξ = û(ξ).

Therefore, ˆ
B(0,R)

ûnûn −→
ˆ
B(0,R)

ûû.
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High frequencies The high frequencies are addressed thanks to the bound on the
H1(Rd) norm:

ˆ
Rd\B(0,R)

ûnûn =

ˆ
Rd\B(0,R)

1

|ξ|2
|ξ|2ûnûn ≤

1

R2

ˆ
Rd

|ξ|2ûnûn −→ 0,

when R→∞.

Remark 2. For the injection W 1,2(Ω) b L2(Ω), we need to extend functions to the
whole of Rd. This restricts the class of domains to the class of Lipschitz Ω. Let Ω̃ be
a fixed bounded domain such that Ω ⊂ Ω̃. We extend a given sequence of functions
un ∈ W 1,2(Ω) to functions ũn ∈ W 1,2(Rd) such that

ũn ≡ un on Ω, and Supp ũn ⊂ Ω̃.

The rest of the proof is similar.

Remark 3. The scheme of this proof will be implemented to prove the div-curl lemma
in the third lecture.

Some notations
We use Einstein’s convention for repeated indices: a repeated index stands for a
summation on the index, as for instance for x, x̂ ∈ Rd,

x · x̂ =
d∑

α=1

xαx̂α =: xαx̂α.

In the whole series of lectures, we will from now on always consider

a bounded and Lipschitz domain Ω

unless explicitly stated otherwise.
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